- 博客(21)
- 资源 (2)
- 收藏
- 关注
原创 深度学习中轴(axis)的理解
参考这篇文章 https://blog.csdn.net/fangjian1204/article/details/53055219 在接触tensorflow和numpy的时候,总是被axis的概念弄混,像np.min(data, axis=0),所以重点学习一下。 在谈到轴之前,首先介绍一下维度的概念,了解了维度的概念,再谈轴就比较好理解了,文章中有一句特别关键的话“设axis...
2018-12-10 10:55:00 2077
原创 git reset 使用及回滚
目录一、git reset 参数1. --soft 2. --mixed 3. --hard 二、 如何回滚文件1. 修改完,还未执行git add 2.使用git add 提交到暂存区,还未commit之前3.已经git commit,还未git push4.已经git push 一、git reset 参数 1. --soft ...
2018-09-21 09:37:26 44372 2
原创 Cuda 编程入门
这篇文章写的特别好,https://blog.csdn.net/xiaohu2022/article/details/79599947,我基本就是参考这篇文章最难理解的部门就是Grid和Block的概念,具体关系参见下图GPU之所以处理图片速度快,就是因为可以把图片的每一块区域分配给一个Thread来处理,每个Thread只负责处理图像的一块区域,当每个Thread都结束的时候,整张图...
2018-08-15 13:22:30 1180
原创 sed处理VOC数据
在mac下运行ssd的命令处理VOC数据,怎么也不成功sed -i "s/^/$name\/JPEGImages\//g" $img_file在训练数据的每一行都都增加文件路径,结果怎么都不成功,原来mac下需要使用-ig命令,搞了好几天,记录一下感谢这篇文章https://www.cnblogs.com/foreverycc/archive/2013/09/07/3306892.html...
2018-03-17 19:51:28 313
原创 目标检测经典模型学习笔记(二)VGG
一、网络结构图片输入是224*224,对图片的每个像素减去RGB的均值采用3*3的卷积核,这种卷积核是能够获得左右、上下和中心的最小尺寸;另外还会采用1*1的卷积核,用于对输出做线性变化,stride=1,在感受野不变的情况下,增加决策函数的非线性。使用padding以保证输入和输出的图片大小一致;一共有5层池化层,2*2,stride=2,没有使用overlapping两个全连接隐层有4096个...
2018-03-14 22:40:06 2206
原创 目标检测经典模型学习笔记(一) AlexNet
一、网络结构有5个卷积层和3个全连接层,第三层卷积和全连接层是全连接,其他卷积层只连接本GPU的上一层输出,第一、层卷积层后面跟着池化层,最后一层是1000通道的softmax层。每一层的后面都跟着ReLu层网络有 60 million parameters and 650,000 neurons图片输入是256*256,首先把短边resize到256,然后从图片中部取出256*256的区块(we...
2018-03-14 09:47:15 1699
原创 防止过拟合的方法
根本方法是获取更多的数据,除了获得更多的数据之外,还有一些技巧用于解决过度拟合问题,这里列出了一些最常见的技术:DropoutL2正则化数据增强其中Dropout和L2正则化在之前的文章()中已经分析过,这篇文章介绍数据增强。数据增强的目的是为了在相同的标签下,获取更多的输入样本。主要方法包括:旋转、随机裁剪、平移、噪声扰动、颜色变换等...
2018-03-04 15:41:04 231
原创 过拟合与L1,L2正则化
一、为什么会产生过拟合?我们常见的损失函数如下所示:周志华的《机器学习》有一句话,“当样本特征很多,而样本数相对较少时,上式很容易陷入过拟合”。关于这就话,我的理解是,当特征较多时,对应的参数W的维度就会越高,越高的维度就越容易拟合出越高维度,越复杂的图形。而当样本数很少,但是又具有拟合复杂图形的能力时,系统就会精确拟合全部特征点,而陷入过拟合,如下图二、什么是L1,L2正则化L1范数是指向量中各...
2018-03-04 13:16:30 778
原创 Numpy截取指定范围内的数据
lst = [[1,2,3,4,5,6], [7,8,9,10,11,12], [71,81,91,101,111,121]]arr = np.asarray(lst)print(arr[0:2, 0:4])>>>[[ 1 2 3 4] [ 7 8 9 10]]
2018-02-25 22:09:44 21011
原创 sparse_softmax_cross_entropy_with_logits的介绍
sparse_softmax_cross_entropy_with_logits实际上是softmax和cross_entropy(交叉熵)两个函数的组合一、softmax核心是做归一化而softmax把一个k维的real value向量(a1,a2,a3,a4….)映射成一个(b1,b2,b3,b4….)其中bi是一个0-1的常数,然后可以根据bi的大小来进行多分类的任务,如取权重最大的一维。二...
2018-02-24 16:18:56 956
原创 数据预处理
一、处理方法 中心化和归一化是常用的方法,处理的结果是均值为0,方差为1二、为什么要进行归一化?1. 把所有的数据进行归一化之后,原有网络只需不断的学习同一个范围内的数据即可;如果不归一化,则学习完一个范围内的数据之后,还需要学习另一个范围内的数据,导致学习成本增加,还可能引起参数震荡2. 增强系统的鲁棒性比如要对红色和蓝色区域进行二元分类,虽然不归一化的情况下也能很好的实现,但如果直线稍微...
2018-02-24 16:02:44 519
原创 dropout学习笔记
目的: 防止过拟合,让一部分权值停止更新,减少权值之间的依赖原理: 当网络有n个参数时,可以选择的子网络个数有2^n种,当n很大时,选中相同子网络的概率很小,避免了对同一个网络重复训练,过分拟合到训练集以前我们网络的计算公式是: 采用dropout后计算公式就变成了: 上面公式中Bernoulli函数,是为了以概率p,随机生成一个0、1的向量在训练的时候,以一定概率乘以上一层的输出(即...
2018-02-24 15:51:56 519
原创 常见梯度下降法
(学习cs231n的笔记,图片就直接偷懒贴了视频的截图,见谅)一、最常见的三种梯度下降法:批量梯度下降(BGD Batch gradient descent)BGD 采用整个训练集的数据来计算 cost function 对参数的梯度缺点:就对整个数据集计算梯度,所以计算起来非常慢随机梯度下降(SGD stochastic gradient descent)每次更新时对每个样本进行梯度更新,速度快...
2018-02-24 14:56:50 5418
原创 mysql 带条件的join写法
$query->leftJoin('stars', function ($leftJoin) use ($workcode) { $leftJoin->on('stars.project_id' , '=', 'projects.id') ->where('stars.workcode', $workcode);});
2017-05-10 14:12:05 1299
转载 php + nginx 上传文件过大
原文地址: https://zhidao.baidu.com/question/2203233462967553868.html个人补充一点: nginx的配置文件是先局部后整体的,当某个项目的conf配置了,会整改nginx.conf的配置通过设置nginx的client_max_body_size解决nginx+php上传大文件的问题:用nginx来做webserver的时,上传大文件
2017-03-30 12:07:09 394
原创 git clone时报错Permission denied (publickey)
在从gitlab上git clone代码时报错Permission denied (publickey).fatal: Could not read from remote repository.Please make sure you have the correct access rightsand the repository exists.因为本地没有key
2017-03-27 14:29:19 898
原创 运维知识杂记 (持续更新中)
1 执行crontab命令后,laravle.log日志用户更改将crontab -u nginx -e 然后添加 * * * * * php /data/www/demo/artisan schedule:run >> /dev/null 2>&1
2017-03-10 10:40:33 268
原创 Allow No 'Access-Control-Allow-Origin' header is present
处理laravel中Allow No 'Access-Control-Allow-Origin' header is present错误
2017-02-21 09:23:19 1530
原创 git使用小记
一直在使用git,但是没有彻底弄明白,今天花时间学习一下,顺便记录下来1. 初始化git环境 创建新文件夹,执行git init, 然后文件夹中就会出现.git的隐藏文件夹,证明已经初始化完成2. 添加和提交修改 创建test.txt,然后修改内容保存。执行 git add test.txt,讲修改添加进git管理, 执行git commit test.txt
2016-08-14 07:45:39 211
微服务架构与实践,王磊注pdf
2017-12-31
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人