sparse_softmax_cross_entropy_with_logits的介绍

sparse_softmax_cross_entropy_with_logits实际上是softmax和cross_entropy(交叉熵)两个函数的组合
一、softmax
核心是做归一化


而softmax把一个k维的real value向量(a1,a2,a3,a4….)映射成一个(b1,b2,b3,b4….)其中bi是一个0-1的常数,然后可以根据bi的大小来进行多分类的任务,如取权重最大的一维。

二、交叉熵代价函数
梯度与误差loss有关,避免了饱和梯度趋近于0的问题

对于多输入单输出的神经元结构而言,如下图所示:


 
 
我们将其损失函数定义为: 
                 

其中:
    

最终求导得: 
    

学习的快慢取决于
  σ(z) - y
也就是输出的error
好处:错误大时,更新多,学的快
   错误小时,学习慢
     避免了  σ′(z) 参与参数更新、影响更新效率的问题;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值