Cuda 编程入门

这篇文章写的特别好,https://blog.csdn.net/xiaohu2022/article/details/79599947,我基本就是参考这篇文章

最难理解的部门就是Grid和Block的概念,具体关系参见下图

è¿éåå¾çæè¿°

GPU之所以处理图片速度快,就是因为可以把图片的每一块区域分配给一个Thread来处理,每个Thread只负责处理图像的一块区域,当每个Thread都结束的时候,整张图就处理完成了,避免了大量for循环的使用

Grid和Block实际上组成了一张大网,当这张大网在图片上“扫一遍”之后,整张图片也就处理完了。尤其是当图片尺寸比较小,GPU资源丰富时,更是一次性就可以扫完。

要获取每个Thread对应的位置,可以使用

int row = threadIdx.y + blockIdx.y * blockDim.y;
int col = threadIdx.x + blockIdx.x * blockDim.x;

 举个简单例子,假如我的图片大小是12*12,如果对这144个像素点,每个像素点做归一化,且一次完成,则可以设置

dim3 gridSize(3, 3);
dim3 blockSize(4, 4);

这样实际就有12*12个Thread,每个Thread处理一个像素值,一次就完成了。

当输入图片尺寸很大,无法一次完成时,每个Thread就需要处理多个像素点,这时就需要“stride”了,比如此时图片大小变为24*24,gridSize和blockSize的值不变,则此时每个Thread需要处理4个像素点,比如处理(0,0)点的Thread,还要处理(0,12),(12,0),(12,12)这几个点。

下面例子是我自己编写的第一个CUDA代码,输入为一张1920*1080的热力图,输出为这张图的局部极值点,即改点的值比上下左右四个点的值都大。首先定义kernel_fun,然后在host上采用kernel_fun<<< grid, block >>>(prams...)的形式调用

 

// 获取矩阵A的(row, col)元素
	__device__ float getElement(float *A, int height, int width, int row, int col)
	{
		return A[row * width + col];
	}

	// 为矩阵A的(row, col)元素赋值
	__device__ void setElement(bool *A, int height, int width, int row, int col, bool value)
	{
		A[row * width + col] = value;
	}
	
	__global__ void getPeak(float *d_in, int height, int width, float thre,  bool *d_out)
	{
		int row = threadIdx.y + blockIdx.y * blockDim.y;
		int col = threadIdx.x + blockIdx.x * blockDim.x;
		
		int stride_row =  blockDim.y * gridDim.y;
		int stride_col =  blockDim.x * gridDim.x;
		
		int max_iter_row = (height + stride_row - 1) / stride_row;
		int max_iter_col = (width + stride_col - 1) / stride_col;
		
		for(int iter_row = 0; iter_row <= max_iter_row ; iter_row++)
		{
			col = threadIdx.x + blockIdx.x * blockDim.x;
			for (int iter_col = 0; iter_col <= max_iter_col; iter_col++) 
			{
				//setElement(d_out, height, width, row, col, 1);
				if (row - 1 <= 0 || col - 1 <= 0) continue;
				if (row + 1 >= height || col + 1 >= width) continue;
		
				float map_cen_val = getElement(d_in, height, width, row, col);
				if (
					(map_cen_val >= thre) &&
					(map_cen_val >= getElement(d_in, height, width, row - 1, col)) &&
					(map_cen_val >= getElement(d_in, height, width, row + 1, col)) &&
					(map_cen_val >= getElement(d_in, height, width, row, col - 1)) &&
					(map_cen_val >= getElement(d_in, height, width, row, col + 1)) 
					)
				{
					setElement(d_out, height, width, row, col, true);
				}
				
				col += stride_col;
			}
			row += stride_row;
		}
	}

Host上的调用方法为

void findPeakPose(float* input_data, int height, int width, float thre, std::vector<Point>& peak_points)
	{
		int nBytes = width * height * sizeof(float);
		int nBytes_output = width * height * sizeof(bool);
		// 申请托管内存
		float *d_in;
		bool  *d_out;
		cudaMalloc((void**)&d_in, nBytes);
		cudaMalloc((void**)&d_out, nBytes_output);
		
		// 将host数据拷贝到device
		cudaMemcpy((void*)d_in, (void*)input_data, nBytes, cudaMemcpyHostToDevice);

		// 定义kernel的执行配置
		dim3 blockSize(32, 32);
		dim3 gridSize(5, 5);
		
		// 执行kernel
		getPeak<<<gridSize, blockSize>>>(d_in, height, width, thre, d_out);
		
		// 同步device 保证结果能正确访问
		cudaDeviceSynchronize();
		
		bool* output_data = (bool*)malloc(nBytes_output);
		cudaMemcpy((void*)output_data, (void*)d_out, nBytes_output, cudaMemcpyDeviceToHost);
		 
		for(int i = 0; i < width * height; i++)
		{
			if (output_data[i])
			{
				Point p;
				p.width = i%1920;
				p.height = i/1920;
				peak_points.push_back(p);
			}	
		}
	
		cudaFree(d_in);
		cudaFree(d_out);
		free(output_data);
	}

简单说明一下__device__ __global__等函数的意义(引用自https://blog.csdn.net/xiaohu2022/article/details/79599947

  • __global__:在device上执行,从host中调用(一些特定的GPU也可以从device上调用),返回类型必须是void,不支持可变参数参数,不能成为类成员函数。注意用__global__定义的kernel是异步的,这意味着host不会等待kernel执行完就执行下一步。
  • __device__:在device上执行,单仅可以从device中调用,不可以和__global__同时用。
  • __host__:在host上执行,仅可以从host上调用,一般省略不写,不可以和__global__同时用,但可和__device__,此时函数会在device和host都编译。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值