One hidden layer Neural Network - Neural Network Representation

本文分享了Andrew Ng教授在Coursera课程《深度学习》中关于神经网络表示的3.2节内容,涉及输入层、隐藏层和输出层的结构,参数定义,以及2层神经网络的传统命名。理解这些概念有助于深入学习神经网络技术。
摘要由CSDN通过智能技术生成

The notes when study the Coursera class by Mr. Andrew Ng "Neural Networks & Deep Learning", section 3.2 "Neural Network Representation". Share it with you and hope it helps!

------------------

figure-1


Figure-1 shows names of different parts of Neural Network.

  • It has Input layer, hidden layer and output layer
  • The term hidden layer refers to the fact that in a training set the true values for these nodes in the middle are not observed.
  • An alternative notation for the input x is a^{[0]} where a stands for activation
  • The hidden layer generates some set of activations called a^{[1]}. The first unit generates value a^{[1]}_{1}, the second unit generates value a^{[1]}_{2} and so on. So here a^{[1]}=\begin{bmatrix} a^{[1]}_{1}\\ a^{[1]}_{2}\\ a^{[1]}_{3}\\ a^{[1]}_{4} \end{bmatrix}
  • The output layer generates value a^{[2]} which is just a real number. And \hat{y}=a^{[2]}
  • One funny thing is this neural network here is called a 2-layer NN in convention. The reason is we don't count input layer.
  • The hidden layer will have parameters associated with it: W^{[1]} (4\times3) and b^{[1]} (4\times1)
  • The output layer will have parameters associated with it: W^{[2]}(1\times4) and b^{[2]}(1\times1)

<end>

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值