计算能量消耗:神经网络(Neural Network)分析——CNN、RNN、Transformers 模型的计算能量消耗量化评估

本文分析了神经网络(Neural Network)中的CNN、RNN和Transformer模型的计算能量消耗,通过MAC、FLOPs和算子数量等方法进行量化评估。作者提出计算能量消耗的重要性,尤其是在AI技术快速发展背景下,降低能源消耗成为关键议题。文中详细阐述了各类模型的计算过程,并提供了计算能量消耗的总结和建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

2021年AI技术的高速发展已经给人们生活带来了无限可能。但是伴随着技术的进步,同时也引起了环境问题和健康问题。其中,能源消耗问题更是难以回避。为了让AI技术能够更好的发挥作用,如何降低其能源消耗是一个重要课题。为此,作者从三个方面对神经网络(Neural Network)进行了分析——CNN、RNN、Transformers。通过研究不同模型的计算能量消耗,作者对计算能源消耗进行了量化评估。并且分析了人类与机器学习模型之间的差异,提出了针对性的解决方案。最后还根据近些年的研究成果,将计算能源消耗纳入到智能电网、智能城市等领域的规划中。
作者简介:刘洪威,中文名潘鹏宇,清华大学计算机系博士,任职于英特尔。对多模态信息处理、神经网络算法以及计算能源消耗等领域均有丰富的研究及应用经验。

2. 基本概念术语说明

2.1 神经网络(Neural Network)

神经网络(Neural Network),又称多层神经元网络,由多个相互连接的神经元组成。每个神经元都接收上一层的所有信号并产生一组新的信号传给下一层,形成一个信息传递系统。神经网络可以接受复杂的输入数据,通过复杂的计算过程转换为输出结果。

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值