Flink 1.13 源码解析——Graph的转化以及StreamGraph的构建

Flink 1.13 源码解析 目录汇总

Flink 1.13 源码解析——Flink 作业提交流程 下

Flink 1.13 源码解析——Flink 作业提交流程 上

Flink 1.13 源码解析——Graph的转化以及JobGraph的构建

Flink 1.13 源码解析——Graph的转化以及ExecutionGraph的构建

目录

前言

一、Graph的重要概念

二、StreamGraph的构建

总结


前言

        Flink中Graph的构建贯穿了整个作业的生命周期,从最初的解析代码中的算子、计算逻辑,到后期的资源申请、资源分配,都有Graph的身影,在接下来几节分析中,我们来看看Flink中StreamGraph的构建,以及StreamGraph到JobGraph的转化,JobGraph到ExecutionGraph的转化。

一、Graph的重要概念

        首先我们来看FLink中Graph的演化过程,Flink1.13相比于Flink1.12的Graph演化,主要在JobGraph到ExecutionGraph处做了优化,这个我们在接下来的内容中细聊,先上图:

         Flink中的Graph概念有四层,分别为StreamGraph、JobGraph、ExecutionGraph和物理执行图。由于物理执行图涉及到Flink资源的分配和调度,这个我们后续再聊,本次主要聊前三层图。其中,StreamGraph和JobGraph是在Client端完成的,或者说是在org.apache.flink.client.cli.CliFrontend类反射执行我们逻辑代码的main方法时完成的,在完成JobGraph的构建后,再将JobGraph以文件形式发送给JobManager的Dispatcher组件,并开始接下来ExecutionGraph的转化工作。

        首先来看StreamGraph,StreamGraph中的每一个顶点都是一个StreamNode,这个StreamNode其实就是一个Operator,连接两个StreamNode的是StreamEdge对象。

        在StreamGraph向JobGraph转化过程中,会对StreamNode进行相应的优化,根据一些条件(看源码的时候将)进行StreamNode的优化合并,合并后就成为了一个JobVertex,而每一个JobVertex就是JobGraph中的端点。JobGraph的输出对象是IntermediateDataSet,存储这JobGraph的输出内容,在JobGraph中,连接上游端点输出和下游端点的边对象叫做JobEdge。

        在JobGraph向ExecutionGraph转化的过程中,主要的工作内容为根据Operator的并行度来拆分JobVertex,每一个JobGraph中的JobVertex对应的ExecutionGraph中的一个ExecutionJonVertex,而每一个JobVertex根据自身并行度会拆分成多个ExecutionVertex。同时会有一个IntermediateResultPartition对象来接收ExecutionVertex的输出。对于同一个ExecutionJobVertex中的多个ExecutionVertex的多个输出IntermediateResultPartition对象组成了一个IntermediateResult对象。但是在Flink1.13版本中,ExecutionGraph不再有ExecutionEdge的概念,取而代之的是ConsumedPartitionGroup和ConsumedVertexGroup。

我们来看看Flink1.12的ExecutionGraph的样子:

 这是Flink1.13的ExecutionGraph的样子:

        在Flink的ExecutionGraph中,有两种分布模式,一对一和多对多,当上下游节点处于多对多模式时,遍历所有edge的时间复杂度为 O(n 平方 ),这意味着随着规模的增加,时间复杂度也会迅速增加。

        在 Flink 1.12 中,ExecutionEdge类用于存储任务之间的连接信息。这意味着对于 all-to-all 分布模式,会有 O(n 平方 )的 ExecutionEdges,这将占用大量内存用于大规模作业。对于两个连接一个 all-to-all 边缘和 10K 并行度的JobVertices,存储 100M ExecutionEdges 将需要超过 4 GiB 的内存。由于生产作业中的顶点之间可能存在多个全对全连接,因此所需的内存量将迅速增加。

        由于同一ExecutionJobVertex中的ExecutionVertex都是由同一个JobVertex根据并行度划分而来,所以承接他们输出的IntermediateResultPartition的结构是相同的,同理,IntermediateResultPartition所连接的下游的ExecutionJobVertex内的所有ExecutionVertex也都是同结构的。因此Flink根据上述条件将ExecutionVertex和IntermediateResultPartiton进行的分组:对于属于同一个ExecutionJobVertex的所有ExecutionVertex构成了一个ConsumerVertexGroup,所有对此ExecutionJobVertex的输入IntermediateResultPartition构成了一个ConsumerPartitionGroup,如下图:

 在调度任务时,Flink需要遍历所有IntermediateResultPartition和所有的ExecutionVertex之间的所有连接,过去由于总共有O(n平方)条边,因此迭代的整体复杂度为O(n平方)。在Flink1.13以后,由于ExecutionEdge被替换为ConsumerPartitionGroup和ConsumedVertexGroup,由于所有同构结果分区都连接到同一个下游ConsumedVertexGroup,当调度器遍历所有连接时,它只需要遍历组一次,计算复杂度从O(n平方)降低到O(n)。

到此,FlinkGraph前三次图的相关重要概念已经介绍完毕,物理执行图的相关内容我们在后续章节中再分析,接下来我们来看代码。

二、StreamGraph的构建

        首先我们回到Flink的样例程序 flink-examples/flink-examples-streaming/src/main/java/org/apache/flink/streaming/examples/wordcount/WordCount.java,来看env.execute方法,我们点进来:

 public JobExecutionResult execute(String jobName) throws Exception {
     Preconditions.checkNotNull(jobName, "Streaming Job name should not be null.");
     // TODO 获取到StreamGraph,并执行StreamGraph
     return execute(getStreamGraph(jobName));
 }

可以看到,在这里我们执行StreamGraph,我们继续点进getStreamGraph方法:

@Internal
    public StreamGraph getStreamGraph(String jobName, boolean clearTransformations) {
        // TODO
        StreamGraph streamGraph = getStreamGraphGenerator().setJobName(jobName).generate();
        // TODO 清空所有的算子
        // TODO 当StreamGraph生成好之后,之前各种算子转换得到的DataStream就没用了
        if (clearTransformations) {
            this.transformations.clear();
        }
        return streamGraph;
    }

在这段方法里,构建出了StreamGraph,并且清空了transformations。在构建StreamGraph时先构建了一个StreamGraphGenerator对象,并调用该对象的generate()方法完成了StreamGraph的构建,我们来看generate方法:

    public StreamGraph generate() {
        // TODO 构建了一个空的StreamGraph对象,目前里面没有StreamNode也没有Edge
        streamGraph = new StreamGraph(executionConfig, checkpointConfig, savepointRestoreSettings);
        shouldExecuteInBatchMode = shouldExecuteInBatchMode(runtimeExecutionMode);

        // TODO 设置StateBackend和Checkpoint
        configureStreamGraph(streamGraph);

        // TODO 初始化一个容器用来存储已经转换过的Transformation
        alreadyTransformed = new HashMap<>();

        /*
        TODO 在之前做算子转换时已经将各个算子转化为Transformation,并添加到了Transformations集合中
         */
        for (Transformation<?> transformation : transformations) {
            // TODO 遍历所有Transformation,然后转换成StreamNode
            transform(transformation);
        }

        for (StreamNode node : streamGraph.getStreamNodes()) {
            if (node.getInEdges().stream().anyMatch(this::shouldDisableUnalignedCheckpointing)) {
                for (StreamEdge edge : node.getInEdges()) {
                    edge.setSupportsUnalignedCheckpoints(false);
                }
            }
        }

        final StreamGraph builtStreamGraph = streamGraph;

        alreadyTransformed.clear();
        alreadyTransformed = null;
        streamGraph = null;

        return builtStreamGraph;
    }

在这段方法里,做了以下工作:

1、构建了一个空的StreamGraph对象,

2、设置StateBackend和Checkpoint

3、初始化一个容器来存储之前已经转换过的Transformation,

4、在之前做算子转换时已经将各个算子转化为Transformation,并添加到了Transformations集合中,这里将Transformation从集合中拿出来,逐一转换成StreamNode。

我们继续来看StreamNode的转换过程,点进transform(transformation)里:

    // TODO 对具体的一个transformation进行转换,转换成StreamGraph中的StreamNode和StreamEdge
    private Collection<Integer> transform(Transformation<?> transform) {
        // TODO 先判断是否已经被transform了
        if (alreadyTransformed.containsKey(transform)) {
            return alreadyTransformed.get(transform);
        }

        LOG.debug("Transforming " + transform);

        if (transform.getMaxParallelism() <= 0) {

            // if the max parallelism hasn't been set, then first use the job wide max parallelism
            // from the ExecutionConfig.
            int globalMaxParallelismFromConfig = executionConfig.getMaxParallelism();
            if (globalMaxParallelismFromConfig > 0) {
                transform.setMaxParallelism(globalMaxParallelismFromConfig);
            }
        }

        // call at least once to trigger exceptions about MissingTypeInfo
        transform.getOutputType();

        // TODO 将transformation和transformationTranslator放入map
        // TODO transformationTranslator是用来将transformation转换成StreamNode的
        @SuppressWarnings("unchecked")
        final TransformationTranslator<?, Transformation<?>> translator =
                (TransformationTranslator<?, Transformation<?>>)
                        translatorMap.get(transform.getClass());

        // TODO 根据不同类型的transform,做相应的不同的转换
        // TODO 将当前transformation转换成StreamNode和StreamEdge,用于构建StreamGraph
        Collection<Integer> transformedIds;
        if (translator != null) {
            transformedIds = translate(translator, transform);
        } else {
            transformedIds = legacyTransform(transform);
        }

        // need this check because the iterate transformation adds itself before
        // transforming the feedback edges
        if (!alreadyTransformed.containsKey(transform)) {
            alreadyTransformed.put(transform, transformedIds);
        }

        return transformedIds;
    }

在这段方法里,构建处理StreamGraph中的StreamNode和StreamGraph,我们来看详细步骤:

1、首先判断拿到的transform是否已经被转换

2、从map里拿出transformation和transformationTranslator,transformationTranslator的作用就是将Transformation转换为StreamNode。

3、接下来就是将Transformation转换为StreamNode和StreamEdge。

我们继续看StreamEdge和StreamNode的构建方法,我们点进translate(translator, transform)方法:

 private Collection<Integer> translate(
            final TransformationTranslator<?, Transformation<?>> translator,
            final Transformation<?> transform) {
        checkNotNull(translator);
        checkNotNull(transform);

        // TODO 获取所有输入
        final List<Collection<Integer>> allInputIds = getParentInputIds(transform.getInputs());

        // the recursive call might have already transformed this
        if (alreadyTransformed.containsKey(transform)) {
            return alreadyTransformed.get(transform);
        }

        // TODO Slot共享,如果没有设置,就是default
        final String slotSharingGroup =
                determineSlotSharingGroup(
                        transform.getSlotSharingGroup(),
                        allInputIds.stream()
                                .flatMap(Collection::stream)
                                .collect(Collectors.toList()));

        final TransformationTranslator.Context context =
                new ContextImpl(this, streamGraph, slotSharingGroup, configuration);

        return shouldExecuteInBatchMode
                // TODO 批处理
                ? translator.translateForBatch(transform, context)
                // TODO 流处理
                : translator.translateForStreaming(transform, context);
    }

在这段代码里完成了以下工作:

1、获取当前算子转换成的transform的所接收的所有上游输出的transform节点

2、Slot共享的相关设置(后面讲)

3、做了一个执行模式的判断

我们直接进流处理模式,点进translator.translateForStreaming,选择SimpleTransformationTranslator实现:

@Override
    public final Collection<Integer> translateForStreaming(
            final T transformation, final Context context) {
        checkNotNull(transformation);
        checkNotNull(context);

        // TODO 这个地方可以是任意类型的算子transformation
        // TODO Source类型算子作为StreamGraph的顶点,在进行StreamNode转换时是无法得到下游算子信息的,
        //  所以Source类型算子在转换StreamNode的过程中不会构建StreamEdge
        final Collection<Integer> transformedIds =
                translateForStreamingInternal(transformation, context);
        configure(transformation, context);

        return transformedIds;
    }

由于当前的转换只针对当前的算子节点,此处是无法得到下游算子的信息,所以在这里不会进行StreamEdge 的构建,我们点进translateForStreamingInternal方法,此处我们选哪个算子类型都行,我们此处以OneInputTransformationTranslator举例,我们点进来:

    @Override
    public Collection<Integer> translateForStreamingInternal(
            final OneInputTransformation<IN, OUT> transformation, final Context context) {
        // TODO
        return translateInternal(
                transformation,
                transformation.getOperatorFactory(),
                transformation.getInputType(),
                transformation.getStateKeySelector(),
                transformation.getStateKeyType(),
                context);
    }

再进入translateInternal方法

protected Collection<Integer> translateInternal(
        final Transformation<OUT> transformation,
        final StreamOperatorFactory<OUT> operatorFactory,
        final TypeInformation<IN> inputType,
        @Nullable final KeySelector<IN, ?> stateKeySelector,
        @Nullable final TypeInformation<?> stateKeyType,
        final Context context) {
    checkNotNull(transformation);
    checkNotNull(operatorFactory);
    checkNotNull(inputType);
    checkNotNull(context);
    final StreamGraph streamGraph = context.getStreamGraph();
    final String slotSharingGroup = context.getSlotSharingGroup();
    final int transformationId = transformation.getId();
    final ExecutionConfig executionConfig = streamGraph.getExecutionConfig();
    // TODO 添加一个Operator(StreamGraph端会添加一个StreamNode)
    streamGraph.addOperator(
            transformationId,
            slotSharingGroup,
            transformation.getCoLocationGroupKey(),
            operatorFactory,
            inputType,
            transformation.getOutputType(),
            transformation.getName());
    if (stateKeySelector != null) {
        TypeSerializer<?> keySerializer = stateKeyType.createSerializer(executionConfig);
        streamGraph.setOneInputStateKey(transformationId, stateKeySelector, keySerializer);
    }
    int parallelism =
            transformation.getParallelism() != ExecutionConfig.PARALLELISM_DEFAULT
                    ? transformation.getParallelism()
                    : executionConfig.getParallelism();
    streamGraph.setParallelism(transformationId, parallelism);
    streamGraph.setMaxParallelism(transformationId, transformation.getMaxParallelism());
    // TODO 获取所有输入
    final List<Transformation<?>> parentTransformations = transformation.getInputs();
    checkState(
            parentTransformations.size() == 1,
            "Expected exactly one input transformation but found "
                    + parentTransformations.size());
    // TODO 设置当前StreamNode和上游所有StreamNode之间的StreamEdge
    for (Integer inputId : context.getStreamNodeIds(parentTransformations.get(0))) {
        // TODO 设置StreamGraph的边
        // TODO transformationId 为当前顶点ID
        // TODO inputId 为上游顶点ID
        streamGraph.addEdge(inputId, transformationId, 0);
    }
    return Collections.singleton(transformationId);
}

可以看到此处:

1、先调用streamGraph.addOperator将当前这个transform转为StreamNode并添加到StreamGraph内,

2、然后获取当前transform的所有上游输出节点的id,通过streamGraph.addEdge来构建StreamEdge,并将StreamEdge添加入StreamGraph中。

我们首先来看StreamNode的构建和添加过程,我们点进streamGraph.addOperator方法:

public <IN, OUT> void addOperator(
            Integer vertexID,
            @Nullable String slotSharingGroup,
            @Nullable String coLocationGroup,
            StreamOperatorFactory<OUT> operatorFactory,
            TypeInformation<IN> inTypeInfo,
            TypeInformation<OUT> outTypeInfo,
            String operatorName) {
        // TODO 此时会选择当前 invokableClass类型
        Class<? extends AbstractInvokable> invokableClass =
                operatorFactory.isStreamSource()
                        ? SourceStreamTask.class
                        : OneInputStreamTask.class;
        // TODO
        addOperator(
                vertexID,
                slotSharingGroup,
                coLocationGroup,
                operatorFactory,
                inTypeInfo,
                outTypeInfo,
                operatorName,
                invokableClass);
    }

我们在进入addOperator:

 private <IN, OUT> void addOperator(
            Integer vertexID,
            @Nullable String slotSharingGroup,
            @Nullable String coLocationGroup,
            StreamOperatorFactory<OUT> operatorFactory,
            TypeInformation<IN> inTypeInfo,
            TypeInformation<OUT> outTypeInfo,
            String operatorName,
            Class<? extends AbstractInvokable> invokableClass) {

        // TODO 一个StreamOperator对应一个StreamNode
        addNode(
                vertexID,
                slotSharingGroup,
                coLocationGroup,
                invokableClass,
                operatorFactory,
                operatorName);
        setSerializers(vertexID, createSerializer(inTypeInfo), null, createSerializer(outTypeInfo));

        if (operatorFactory.isOutputTypeConfigurable() && outTypeInfo != null) {
            // sets the output type which must be know at StreamGraph creation time
            operatorFactory.setOutputType(outTypeInfo, executionConfig);
        }

        if (operatorFactory.isInputTypeConfigurable()) {
            operatorFactory.setInputType(inTypeInfo, executionConfig);
        }

        if (LOG.isDebugEnabled()) {
            LOG.debug("Vertex: {}", vertexID);
        }
    }

再点入addNode方法:

    protected StreamNode addNode(
            Integer vertexID,
            @Nullable String slotSharingGroup,
            @Nullable String coLocationGroup,
            Class<? extends AbstractInvokable> vertexClass,
            StreamOperatorFactory<?> operatorFactory,
            String operatorName) {

        if (streamNodes.containsKey(vertexID)) {
            throw new RuntimeException("Duplicate vertexID " + vertexID);
        }

        // TODO 对于每一个StreamOperator,初始化了一个StreamNode
        StreamNode vertex =
                new StreamNode(
                        vertexID,
                        slotSharingGroup,
                        coLocationGroup,
                        operatorFactory,
                        operatorName,
                        vertexClass);

        // TODO 将该StreamNode加入到StreamGraph中
        // TODO 编写算子处理逻辑(UserFunction) ==> StreamOperator ==> Transformation ==> StreamNode
        // TODO 构建StreamNode的时候,会多做一件事,指定InvokableClass
        // TODO 判断是否是Source算子,如果是则InvokableClass = SourceStreamTask,如果不是则为OneInputStreamTask或Two...等等
        streamNodes.put(vertexID, vertex);

        return vertex;
    }

        到这里,开始真正构建StreamNode,每一个StreamOperator对应一个StreamNode。在完成StreamNode的构建之后,会将StreamNode加入到StreamGraph之中。结合前面章节所分析的,可以看出StreamNode的构建流程为:

(UserFunction) ==> StreamOperator ==> Transformation ==> StreamNode

        在构建StreamNode的过程中,会指定InvokableClass。此时会判断当前transform是否为Source算子,如果是则

  • InvokableClass = SourceStreamTask,
  • 如果不是则InvokableClass = OneInputStreamTask或其他。

        到此StreamNode就构建完成了,我们继续看StreamEdge的构建,我们回到streamGraph.addEdge方法:

public void addEdge(Integer upStreamVertexID, Integer downStreamVertexID, int typeNumber) {
    // TODO
    addEdgeInternal(
        upStreamVertexID,
        downStreamVertexID,
        typeNumber,
        null,
        new ArrayList<String>(),
        null,
        null);
}

再点进addEdgeInternal方法:

    private void addEdgeInternal(
            Integer upStreamVertexID,
            Integer downStreamVertexID,
            int typeNumber,
            StreamPartitioner<?> partitioner,
            List<String> outputNames,
            OutputTag outputTag,
            ShuffleMode shuffleMode) {

        if (virtualSideOutputNodes.containsKey(upStreamVertexID)) {
            int virtualId = upStreamVertexID;
            upStreamVertexID = virtualSideOutputNodes.get(virtualId).f0;
            if (outputTag == null) {
                outputTag = virtualSideOutputNodes.get(virtualId).f1;
            }
            addEdgeInternal(
                    upStreamVertexID,
                    downStreamVertexID,
                    typeNumber,
                    partitioner,
                    null,
                    outputTag,
                    shuffleMode);
        } else if (virtualPartitionNodes.containsKey(upStreamVertexID)) {
            int virtualId = upStreamVertexID;
            upStreamVertexID = virtualPartitionNodes.get(virtualId).f0;
            if (partitioner == null) {
                partitioner = virtualPartitionNodes.get(virtualId).f1;
            }
            shuffleMode = virtualPartitionNodes.get(virtualId).f2;
            addEdgeInternal(
                    upStreamVertexID,
                    downStreamVertexID,
                    typeNumber,
                    partitioner,
                    outputNames,
                    outputTag,
                    shuffleMode);
        } else {
            // TODO
            createActualEdge(
                    upStreamVertexID,
                    downStreamVertexID,
                    typeNumber,
                    partitioner,
                    outputTag,
                    shuffleMode);
        }
    }

上面进行了一些判断,我们直接来看StreamEdge的新建过程,点进createActualEdge方法:

    private void createActualEdge(
            Integer upStreamVertexID,
            Integer downStreamVertexID,
            int typeNumber,
            StreamPartitioner<?> partitioner,
            OutputTag outputTag,
            ShuffleMode shuffleMode) {
        // TODO 通过上游顶点拿到上游StreamNodeId
        StreamNode upstreamNode = getStreamNode(upStreamVertexID);
        // TODO 其实就是当前顶点的StreamNodeId,对StreamEdge来说,该StreamNode为这条边的下游
        StreamNode downstreamNode = getStreamNode(downStreamVertexID);

        // If no partitioner was specified and the parallelism of upstream and downstream
        // operator matches use forward partitioning, use rebalance otherwise.
        /* TODO 如果没有设置partitioner
            1.如果上游StreamNode和下游StreamNode并行度一样,则使用ForwardPartitioner数据分发策略
            2.如果上游StreamNode和下游StreamNode并行度不一样,则使用RebalancePartitioner数据分发策略
         */

        if (partitioner == null
                && upstreamNode.getParallelism() == downstreamNode.getParallelism()) {
            partitioner = new ForwardPartitioner<Object>();
        } else if (partitioner == null) {
            partitioner = new RebalancePartitioner<Object>();
        }

        if (partitioner instanceof ForwardPartitioner) {
            if (upstreamNode.getParallelism() != downstreamNode.getParallelism()) {
                throw new UnsupportedOperationException(
                        "Forward partitioning does not allow "
                                + "change of parallelism. Upstream operation: "
                                + upstreamNode
                                + " parallelism: "
                                + upstreamNode.getParallelism()
                                + ", downstream operation: "
                                + downstreamNode
                                + " parallelism: "
                                + downstreamNode.getParallelism()
                                + " You must use another partitioning strategy, such as broadcast, rebalance, shuffle or global.");
            }
        }

        if (shuffleMode == null) {
            shuffleMode = ShuffleMode.UNDEFINED;
        }

        /**
         * Just make sure that {@link StreamEdge} connecting same nodes (for example as a result of
         * self unioning a {@link DataStream}) are distinct and unique. Otherwise it would be
         * difficult on the {@link StreamTask} to assign {@link RecordWriter}s to correct {@link
         * StreamEdge}.
         */
        int uniqueId = getStreamEdges(upstreamNode.getId(), downstreamNode.getId()).size();

        // TODO 构建StreamEdge对象
        StreamEdge edge =
                new StreamEdge(
                        upstreamNode,
                        downstreamNode,
                        typeNumber,
                        partitioner,
                        outputTag,
                        shuffleMode,
                        uniqueId);

        // TODO 将当前的StreamEdge对象设置为上游StreamNode的输出边
        getStreamNode(edge.getSourceId()).addOutEdge(edge);
        // TODO 将当前的StreamEdge对象设置为下游StreamNode的输入边
        getStreamNode(edge.getTargetId()).addInEdge(edge);
    }

在这个方法里,首先会去拿上游StreamNode的Id,然后去拿下游StreamNode的Id。然后会判断一下并行度的设置:

1.如果上游StreamNode和下游StreamNode并行度一样,则使用ForwardPartitioner数据分发策略
2.如果上游StreamNode和下游StreamNode并行度不一样,则使用RebalancePartitioner数据分发策略

然后new StreamEdge来构建StreamEdge,然后将当前的StreamEdge与上下游StreamNode连接起来,当期StreamEdge为上游StreamNode的输出边,为下游StreamNode的输入边。

 到这里,StreamGraph的构建就已经完成

总结

        在上面的过程中,首先根据用户调用的算子,生成StreamOperator,然后将StreamOperator转化为Transformation,最后再将Transformation转化为StreamNode,在StreamNode构建完成之后先将StreamNode放入StreamGraph对象,再根据StreamNode的类型以及上下游StreamNode的关系开始构建StreamEdge,构建完成后使用StreamEdge将上下游有输出输入关系的StreamNode连接起来,在所有的StreamEdge连接完成后,StreamGraph就构建完成了。

        在下一章我们来分析StreamGraph到JobGraph的转化以及JobGraph向ExecutionGraph的转化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EdwardsWang丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值