自动驾驶大模型领域的论文精读笔记
文章平均质量分 72
本专栏用于记录自动驾驶大模型领域的论文精度笔记
EEPI
这个作者很懒,什么都没留下…
展开
-
【论文精读】Sparse4D v2: Recurrent Temporal Fusion with Sparse Model
团队:地平线时间:代码:简介:PETR是query-based方法,但是为了实现特征融合,进行了全局注意力机制,导致高计算量。image通过backbone和FPN,得到多尺度特征,略。这一层是为了提取这一帧新出现的障碍物。根据SparseDrive在附录的信息,初始化900组特征和anchor,然后选出打分最高的300组highest confidence instances给到multi-frame layers。这一层拿到sigle frame layer输出的300组障碍物信息,然后再从mem原创 2024-07-25 11:07:21 · 518 阅读 · 0 评论 -
【论文精读】Fully Sparse 3D Occupancy Prediction
团队:南京大学,上海人工智能实验室时间:2023年12月代码:https://github.com/MCG-NJU/SparseOcc。原创 2024-07-22 19:48:28 · 1113 阅读 · 1 评论 -
阅读LINGO-1: Exploring Natural Language for Autonomous Driving
网页链接:https://wayve.ai/thinking/lingo-natural-language-autonomous-driving/wayve在9月14日公布了大语言模型和自动驾驶的结合模型LINGO-1,可以用自然语言解释自动驾驶的决策原因。大型语言模型LLM在AI领域研究和应用越来越多。视觉语言模型VLM,vision-language model。文本图像检索text-to-image retrieval。图片分类image classification。但是目前没有论文和开源代码。原创 2023-10-02 14:13:46 · 298 阅读 · 0 评论 -
【论文精读】NMP: End-to-end Interpretable Neural Motion Planner
cost volume经典之作原创 2023-10-15 18:03:35 · 495 阅读 · 0 评论 -
【论文精读】PlanT: Explainable Planning Transformers via Object-Level Representations
院校:德国的图宾根大学网站:https://www.katrinrenz.de/plant。原创 2023-11-05 17:14:16 · 396 阅读 · 0 评论 -
重要结论:Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving?
论文链接:https://arxiv.org/pdf/2312.03031。原创 2024-05-17 17:04:49 · 427 阅读 · 0 评论 -
【论文精读】WHY GRADIENT CLIPPING ACCELERATES TRAINING : A THEORETICAL JUSTIFICATION FOR ADAPTIVITY
MIT的论文2020年。原创 2024-05-28 18:37:57 · 249 阅读 · 0 评论 -
【论文阅读】SparseAD: Sparse Query-Centric Paradigm for Efficient End-to-End Autonomous Driving
论文链接:https://arxiv.org/pdf/2404.06892团队:迈驰、中科大。原创 2024-06-12 21:00:03 · 222 阅读 · 1 评论 -
【论文精读】PARA-Drive: Parallelized Architecture for Real-time Autonomous Driving
团队:英伟达会议:CVPR2024。原创 2024-06-18 16:58:38 · 637 阅读 · 0 评论 -
自动驾驶论文总结
如何理解agent centric。原创 2024-07-10 15:04:06 · 397 阅读 · 0 评论 -
【论文精读】Exploring the Causality of End-to-End Autonomous Driving
团队:百度代码:https://github.com/bdvisl/DriveInsight论文思想简述:这篇论文并不是提出SOTA模型,而是提出了一些的方法。原创 2024-07-11 14:51:44 · 720 阅读 · 3 评论 -
【论文精读】SparseDrive: End-to-End Autonomous Driving via Sparse Scene Representation
团队:清华大学,地平线投稿会议:暂时未知,挂在rxiv代码链接:https://github.com/swc-17/SparseDrive开环测试数据集:nuScenes。原创 2024-07-17 18:33:40 · 878 阅读 · 4 评论 -
论文精读Motion Prediction of Traffic Actors for Autonomous Driving using Deep Convolutional Networks
6.根据dropout分析(dropout analysis,随机丢弃节点,防止过拟合,参考深度学习Dropout技术分析),模型没有什么太大变化,说明已经收敛,增加额外信息没有必要。Along-track error,沿轨误差,我理解是沿着车道线的纵向误差,因为轨迹点是按照固定时间间隔得到的。4.图片中车头朝上,放在图片的(15m, 5m)位置,车辆前方有25m,后方有5m,作为环境信息;目前基于学习的方法需要人工设计特征,以获取环境信息,导致性能是次佳的(suboptimal)。原创 2023-09-24 10:48:10 · 111 阅读 · 0 评论 -
论文精读VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation
2.predction的时候不一定要MLP for simplicity,可以考虑LSTM,因为轨迹点之间都是有关系的,论文里自己也写了可以用其他advanced decoders。进行节点补全工作(故意遮蔽输入节点,让模型去重建这些特征,以此让模型能够更精准地捕捉交互信息),这样的做法让模型更加强大。将车辆动态信息和结构化的高精地图信息向量化(vectorized form),通过向量化的信息进行轨迹预测;1.向量化的时候,选取的特征可以选择更多有用的信息,目前选择的较少(首位信息,类型信息等)。原创 2023-09-23 22:40:21 · 192 阅读 · 0 评论 -
论文精读Transformer: Attention is all you need
CNN需要很多层才能把距离很远的像素或者输入联系起来,输入长度和计算复杂度成线性关系,导致(1)难以学习远距离的输入;4.Transformer的时间复杂度与序列长度成平方关系,而RNN和CNN与序列长度成正比,所以在数据集太大的时候,计算复杂度会更高computational complexity。LSTM是循环执行的,依赖前一项隐藏层信息h(t-1),天然不适合并行,而且受限于隐藏层大小,更容易丢失以前的信息。Transformer因为不依赖之前的信息,所以可以进行并行可算,减少计算时间。原创 2023-09-23 22:27:35 · 220 阅读 · 0 评论 -
论文精读GAN: Generative Adversarial Nets
如果训练太多次判别器再训练生成器,那么可能导致【模式崩溃】(不管给什么噪声,输出结果一样)因为生成器没有直接接触样本,而是通过判别器告诉它像不像,就像枯叶蝶不知道枯叶长什么样子;源码地址:http://www.github.com/goodfeli/adversarial。论文链接:https://arxiv.org/abs/1406.2661。而是采用的深度学习,深度学习中有完备的训练技巧。条件GAN:指定生成什么类型的图片,比如固定数字、某种小动物等;图像填充:把图像中的路人用风景填充。原创 2023-09-23 22:31:17 · 191 阅读 · 0 评论 -
论文精读NMP:Neural Map Prior for Autonomous Driving
去高精地图的方法之一原创 2023-09-30 11:14:06 · 679 阅读 · 0 评论 -
论文精读Safetynet
第一篇深度学习+规则的planning方案原创 2023-09-10 20:57:37 · 307 阅读 · 0 评论 -
论文精读ResNet: Deep Residual Learning for Image Recognition
论文链接:https://arxiv.org/abs/1512.03385Github链接:https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py知乎讲解:ResNet论文笔记及代码剖析。原创 2023-09-23 22:19:55 · 211 阅读 · 0 评论 -
VectorNet复现指南与源码分析
在argoverse-api文件夹下根据setup.py来安装必要依赖。原创 2023-07-22 16:05:23 · 601 阅读 · 1 评论 -
论文精读MP3: A Unified Model to Map, Perceive, Predict and Plan
MP3采用了无高精地图的端到端的方法,并且能够生成可解释的规划 决策的中间表示。中间表示包含未来的位置和速度。首先采用backbone来踢去地图特征与语义特征,然后生成中间表示。原创 2023-09-17 20:26:51 · 245 阅读 · 0 评论