VectorNet复现指南与源码分析

1 准备环境

1.1安装argoverse

setup.py中sklearn要改成scikit-learn。
在argoverse-api文件夹下根据setup.py来安装必要依赖。

pip install -i -e .
// 如果上面这个报错,就用下面这个,是因为超时导致的。
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -e . .

No module named ensurepip

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py   # 下载安装脚本
python3 get-pip.py

fatal error: Python.h: 没有那个文件或目录

sudo apt-get install python-dev
sudo apt-get install python3.7-dev

1.2安装Anaconda和pytorch

wget https://repo.anaconda.com/archive/Anaconda3-2021.11-Linux-x86_64.sh
bash xx.sh
conda create -n vectornettest python=3.7
conda install pytorch torchvision torchaudio cpuonly -c pytorch

1.3 安装torch-geomtric

在https://data.pyg.org/whl/网址选择你的toch版本的链接,确认torch版本链接可以:

import torch
print(torch.__version__)  

我的是1.13的,那么在该网址(https://data.pyg.org/whl/torch-1.13.1%2Bcpu.html)下载如下4个包:

torch_cluster-1.6.1+pt113cpu-cp37-cp37m-linux_x86_64.whl
torch_scatter-2.1.1+pt113cpu-cp37-cp37m-linux_x86_64.whl
torch_sparse-0.6.17+pt113cpu-cp37-cp37m-linux_x86_64.whl
torch_spline_conv-1.2.2+pt113cpu-cp37-cp37m-linux_x86_64.whl

然后在conda的vectornet的环境里,pip install 这些包,再安装torch-
注意,pip install超时时可以 -i https://pypi.tuna.tsinghua.edu.cn/simple

1.3 进入环境与退出环境

conda activate vectornettest
conda deactivate

其中,conda deactivate输入一次退出虚拟环境,再输入一次退出base。

2 源码分析

  1. SubGraph
  2. SelfAttentionLayer
  3. MLP

2.1 SubGraph分析

  1. GraphLayerProp
  2. GraphLayerProp
  3. GraphLayerProp
  4. max_pool
  5. norm

2.1.1 GraphLayerProp

  1. MLP(Linear LayerNorm ReLU Linear)
  2. Propagate(传递邻居节点;聚合最大值;更新时将原feature和聚合后的feature相连)

2.2 SelfAttentionLayer分析

就是自注意力机制

2.3 MLP分析

就是自注意力机制
8. Linear
9. LayerNorm
10.ReLU
11.Linear

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值