自动驾驶论文总结

1.预测

1.1光栅化

代表性论文

  1. Motion Prediction of Traffic Actors for Autonomous Driving using Deep Convolutional Networks (Uber)
  2. MultiPath (Waymo)

问题

  1. 渲染信息丢失
  2. 感受野有限
  3. 高计算复杂度

1.2图神经网络

1.2.1 图卷积

  1. LaneGCN (uber 2020)

1.2.2 边卷积

  1. VectorNet (waymo 2020)
    注意:Vectornet的子图使用的是边缘卷积,大图使用的是自注意力机制

Transformer

  1. mmTransformer (2021)
  2. WayFormer
  3. QCNet (2023 CVPR,还没看懂)

1.3基于锚点

  1. DenseTNT

1.4生成式模型

  1. Social gan: Socially acceptable trajectories with generative adversarial networks (CVPR 2018)
  2. Tranjectron++

1.5Metrics

  1. b-minFDE:(1-p_i)^2 * minFDE_i
  2. b-minADE:(1-p_i)^2 * minADE_i
    参考:https://eval.ai/web/challenges/challenge-page/454/evaluation

2.端到端

2.1光栅化

  1. End-to-end Interpretable Neural Motion Planner (uber 2019)
  2. P3 (uber)

2.2图神经网络

2.3Transformer

  1. UniAD
  2. VAD
  3. SparseAD / SparseDrive

2.4采样

  1. Curve-based sampler (NMP )

  2. Lane-based sampler (P3 uber 2020)

  3. Retrieval-based sampler (MP3)

  4. 如何理解agent centric

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值