【论文精读】WHY GRADIENT CLIPPING ACCELERATES TRAINING : A THEORETICAL JUSTIFICATION FOR ADAPTIVITY

MIT的论文
2020年

平滑

  1. 如果一个函数符合L-smooth,那么在梯度下降法中,h=1/L是最优的常数。
  2. 但是L-smooth应用有限。比如y=x^3即不符合假设。这样只能将其限制在一段符合该假设的范围内使用,但是这样也导致L很大, 收敛变慢。

问题引入

  1. 函数平滑性和梯度范数成正相关local smoothness positively correlates with the full gradient norm
  2. 如果能够设计一个合理的平滑性前提,是不是能找到一个更快收敛的算法?
  3. (我自己的补充,梯度越大,说明函数越陡,优化步进的步幅也就越大larger steps,所以希望梯度范数更大,就需要L越大)

结论

  1. 如果损失函数满足更宽松的(L0, L1)平滑,而不是严格的Lipschitz平滑,那么可以证明梯度修剪和梯度归一化会比定步长梯度下降更快。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值