逻辑回归代价函数

逻辑回归的代价函数通常使用交叉熵损失来定义。这种损失函数非常适合于二元分类问题。

本篇来推导一下逻辑回归的代价函数。

首先,我们在之前了解了逻辑回归的定义:逻辑回归模型是一种用于二元分类的模型,其预测值是一个介于0和1之间的概率。模型的形式是一个S形的逻辑函数(sigmoid函数),但是sigmoid函数的参数到底要选哪个,就需要对sigmoid函数的结果进行评判,因此也就需要第二步:损失评估。

举个例子:

假设我们有一个逻辑回归模型,用来预测学生是否会通过最终考试。我们有两个特征:学生的出勤率和平均成绩。模型的目标是基于这些特征预测学生是否会通过考试("通过"记为1,"不通过"记为0)。

特征和参数
  • 假设特征向量 x = [ x 1 x 2 ] x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} x=[x1x2],其中 x 1 x_1 x1是学生的出勤率, x 2 x_2 x2是学生的平均成绩。
  • 模型的参数为 θ = [ θ 0 θ 1 θ 2 ] \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix} θ= θ0θ1θ2 ,其中 θ 0 \theta_0 θ0是偏置项, θ 1 \theta_1 θ1 θ 2 \theta_2 θ2分别是与出勤率和平均成绩相关的权重。
计算 h ( x ) h(x) h(x)

模型会计算 h ( x ) h(x) h(x),即给定特征时通过考试的预测概率。这是通过sigmoid函数来完成的:

h θ ( x ) = 1 1 + e − ( θ 0 + θ 1 x 1 + θ 2 x 2 ) h_\theta(x) = \frac{1}{1 + e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2)}} hθ(x)=1+e(θ0+θ1x1+θ2x2)1

假设对于一个特定学生,出勤率 x 1 = 0.85 x_1 = 0.85 x1=0.85(85%),平均成绩 x 2 = 75 x_2 = 75 x2=75,而模型参数为 θ 0 = − 4 \theta_0 = -4 θ0=4 θ 1 = 10 \theta_1 = 10 θ1=10 θ 2 = 0.05 \theta_2 = 0.05 θ2=0.05。那么 h ( x ) h(x) h(x)的计算为:

h θ ( x ) = 1 1 + e − ( − 4 + 10 × 0.85 + 0.05 × 75 ) h_\theta(x) = \frac{1}{1 + e^{-(-4 + 10 \times 0.85 + 0.05 \times 75)}} hθ(x)=1+e(4+10×0.85+0.05×75)1

计算这个表达式的值(这需要一些数学运算),假设结果是 h θ ( x ) ≈ 0.76 h_\theta(x) \approx 0.76 hθ(x)0.76。这意味着根据我们的模型,这个学生通过考试的预测概率是 76%。基于这个预测,由于概率大于0.5,我们可以预测这个学生会通过考试。

到这一步为止, θ 0 = − 4 \theta_0 = -4 θ0=4 θ 1 = 10 \theta_1 = 10 θ1=10 θ 2 = 0.05 \theta_2 = 0.05 θ2=0.05实际上是我们随机(或经验)取的一组参数数值,但其并不是最佳的,所以就需要有一个代价函数来判断整体的损失(正确率),再进行梯度下降(或其他优化算法)来迭代地调整这些参数,以获得最小化损失。

在逻辑回归中,由于目标结果只有0和1两种情况,因此去计算一组数据的损失的时候就需要区分成两个函数

当 y=1 时的损失函数

Cost when  y = 1 : − log ⁡ ( h θ ( x ) ) \text{Cost when } y = 1: -\log(h_\theta(x)) Cost when y=1:log(hθ(x))

当 y=0 时的损失函数

Cost when  y = 0 : − log ⁡ ( 1 − h θ ( x ) ) \text{Cost when } y = 0: -\log(1 - h_\theta(x)) Cost when y=0:log(1hθ(x))
对应的图如下:
在这里插入图片描述
用一个式子来同时包含这两个情况就是我们的逻辑回归的代价函数(交叉熵损失):
J ( θ ) = − 1 m ∑ i = 1 m [ y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[ y^{(i)} \log(h_\theta(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_\theta(x^{(i)})) \right] J(θ)=m1i=1m[y(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))]
我们可以看到这里 l o g ( h θ ( x ( i ) ) ) log(h_\theta(x^{(i)})) log(hθ(x(i)))前面乘以了 y ( i ) y^{(i)} y(i),所以当目标值为0的时候,这部分就变成了0,也就不会影响后面部分的计算,就很简单地实现了两个式子融合。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值