使用Matlab实现一维信号二分类/多分类的CNN网络,并绘制混淆矩阵

Matlab使用CNN(卷积神经网络)对一维信号(如语音信号、心电图信号)进行二分类源程序。
也可以改成多分类。
会提供原始数据,数据可直接替换为自己的数据运行,注释详细
工作如下:
1、加载数据,一共为200个正常样本和200个异常样本,训练集为80%,即160正常和160异常,一共320条数据;测试集为40正常和40异常,一共80条数据。
2、构建一维CNN架构,层数为两层。
3、构建options。
4、训练。
5、测试,并绘制混淆矩阵。
注:考虑到使用Matlab对一维信号进行CNN分类的教程较少,此程序是为了方便学习怎么搭建网络、测试等等,使用的数据量较少,并且数据本身也易于分类,自己换成自己的数据时可能需要根据实际情况调整网络。

YID:7710676516531093

耐***3



标题:使用卷积神经网络实现一维信号的多分类——以Matlab为例

摘要:本文介绍了如何使用Matlab中的卷积神经网络(CNN)对一维信号进行多分类。通过加载数据、构建CNN架构、设置参数、训练模型和测试模型等步骤,实现了对一维信号进行分类的功能。

关键词:Matlab、卷积神经网络、一维信号、多分类、数据加载、CNN架构、训练、测试、混淆矩阵

  1. 引言
    卷积神经网络(CNN)是一种深度学习算法,在图像识别、自然语言处理等领域取得了许多重要的成果。然而,在对一维信号进行分类的应用中,对于使用CNN的教程相对较少。本文旨在借助Matlab,介绍如何使用CNN对一维信号进行多分类,并提供了源程序和详细的注释,方便读者学习和使用。

  2. 数据加载与准备
    我们提供了一组包含正常样本和异常样本的数据集,数据集共包含200个正常样本和200个异常样本。我们将数据划分为训练集和测试集,其中训练集占总数据集的80%,即160个正常样本和160个异常样本;测试集占总数据集的20%,即40个正常样本和40个异常样本。

  3. 构建一维CNN架构
    为了对一维信号进行多分类,我们构建了一个包含两层的一维CNN架构。具体的网络结构可以根据实际需求进行调整和优化。

  4. 设置参数和选项
    在使用CNN进行训练之前,我们需要设置一些参数和选项。例如,我们可以设置学习率、批处理大小、迭代次数等参数,并设置优化器、损失函数等选项。

  5. 模型训练
    在进行模型训练之前,我们需要将数据集加载到内存中,并对数据进行预处理,例如归一化处理、数据维度变换等。然后,我们使用加载的数据集进行模型的训练。训练过程中,CNN会通过反向传播算法来不断优化模型的权重和偏置。

  6. 模型测试
    在完成模型的训练后,我们使用测试集对模型进行测试,并绘制混淆矩阵来评估分类性能。混淆矩阵可以显示出模型在各个类别上的分类准确度,包括真阳性、真阴性、假阳性和假阴性等信息。

  7. 结果分析与讨论
    根据测试结果和混淆矩阵,我们可以对模型的分类性能进行分析和讨论。如果模型在某些类别上的分类准确率较低,我们可以尝试调整网络结构、增加数据量或者尝试其他优化方法来改进模型的性能。

  8. 结论与展望
    通过本文的介绍和实例,我们展示了如何使用Matlab中的CNN对一维信号进行多分类。通过加载数据、构建CNN架构、设置参数、训练模型和测试模型等步骤,我们可以建立一个有效的一维信号分类模型。本文提供的源程序和注释可以帮助读者更好地理解和使用该方法,同时也为进一步的研究提供了参考和拓展空间。

注:本程序中使用的数据量较少,并且数据本身易于分类,旨在方便读者学习搭建网络和测试等操作。在使用自己的数据时,可能需要根据实际情况调整网络结构和参数设置。

  1. 致谢
    感谢读者的阅读和支持,也感谢开源社区提供的各种工具和资源,让我们能够更便捷地进行技术研究和应用开发。

参考文献

[1] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

[2] Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham.

[3] Liu, Y., Yeh, M. C., & Liu, S. (2015). Using convolutional neural networks for image recognition. Journal of Visual Languages and Computing, 28, 22-31.

[4] Ioffe, S., & Szegedy, C. (2015). Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

以上相关代码,程序地址:http://coupd.cn/676516531093.html

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
对于生成混淆矩阵和ROC曲线的库,我推荐使用Scikit-learn。Scikit-learn是一个强大的Python机器学习库,提供了许多用于分类和模型评估的工具。以下是使用Scikit-learn生成混淆矩阵和ROC曲线的步骤: 1. 安装Scikit-learn库 你可以使用pip或conda安装Scikit-learn库: ``` pip install -U scikit-learn ``` ``` conda install scikit-learn ``` 2. 导入必要的库 ```python import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix, roc_curve, auc ``` 3. 准备数据 假设你已经有了测试集的真实标签和模型预测的标签,可以将它们存储在两个numpy数组中: ```python y_true = np.array([0, 1, 1, 0, 1, 0, 0, 1]) y_pred = np.array([0, 1, 1, 0, 0, 1, 0, 1]) ``` 4. 生成混淆矩阵 可以使用`confusion_matrix`函数生成混淆矩阵: ```python cm = confusion_matrix(y_true, y_pred) print(cm) ``` 输出结果为: ``` [[3 1] [1 3]] ``` 其中,第一行表示真实标签为0和1的样本数,第一列表示预测标签为0和1的样本数。例如,混淆矩阵中的3表示真实标签为0且预测标签为0的样本数。 5. 绘制ROC曲线 可以使用`roc_curve`函数计算ROC曲线的假阳性率(FPR)、真阳性率(TPR)和阈值(thresholds): ```python fpr, tpr, thresholds = roc_curve(y_true, y_pred) ``` 然后,可以使用`auc`函数计算ROC曲线下的面积(AUC): ```python roc_auc = auc(fpr, tpr) print('AUC = %.2f' % roc_auc) ``` 最后,可以使用Matplotlib绘制ROC曲线: ```python plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') plt.legend(loc="lower right") plt.show() ``` 这将绘制一个ROC曲线,其中橙色曲线是ROC曲线,虚线是随机猜测的曲线。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值