15、模糊概念的推理与命名问题探讨

模糊概念的推理与命名问题探讨

1. 连锁悖论相关问题

1.1 连锁悖论的提出

连锁悖论由米利都的欧布利德斯在公元前4世纪引入,源于希腊语“soros”(堆)。例如,一堆有一百万粒小麦,拿走一粒仍为堆,但不断拿取,最终堆会消失,变成普通的小麦堆。换个角度,一粒不是堆,两粒不是堆,三粒也不是堆,那多少粒才构成堆呢?是否存在这样的数量,增加一粒就形成堆?

1.2 “堆”概念的模糊性

“堆”是模糊词,难以衡量其含义,因为很难判断“这堆”是否比“那堆”更像堆。尽管存在边界情况,但人们能识别什么是堆或不是堆,其哲学分析基于“渐进”论证。从“否定和对立的清晰内核”角度看,有新视角来审视“堆”与“非堆”的“分离点”,哲学家马克斯·布莱克认为该点应存在,但无法找到。

“堆”在英语和西班牙语等自然语言中没有明确公认的反义词,不过设计“堆”的隶属函数后,可得到其反义词的隶属函数。

1.3 以“小”为例分析分离点

在区间[0, 10]中讨论“小”这个词。在自然语言里,若x被判定为小,那么所有y ≤ x也为小,且与x非常接近且大于x的z也为小。即存在e > 0,若x为小,则所有z ∈ (x - e, x + e)都为小,这表明“小”具有灵活性,其定量含义可由连续、严格递减的隶属函数lsmall表示。

例如,若lsmall(x) = 1 - x/10,且x - e < z < x + e,则lsmall(x + e) ≤ lsmall(z) ≤ lsmall(x - e),且lsmall(x - e)不能为0,否则lsmall在区间(x - e, x + e)不是严格递减的。除z

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值