动态规划---环形房屋偷盗(剑指offer-90)

原题链接

题目描述

一个专业的小偷,计划偷窃一个环形街道上沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。

给定一个代表每个房屋存放金额的非负整数数组 nums ,请计算 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。

示例1

输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

示例2

输入:nums = [1,2,3,1]
输出:4
解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。

示例3

输入:nums = [0]
输出:0

思路

因为这道题和《房屋偷盗》极为相似,所以建议看之前先看上一篇
动态规划—房屋盗窃(剑指offer-89)
因为房屋是环形的,那就意味如果我们偷第一个房子的话,就不能偷最后一个房子,因为他俩是挨着的,那就相当于dp编号0~n-2的房子呗。
那就把上一道题的

for(int i = 2; i < nums.length; i++){
            dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]);
        }

改成

for(int i = 2; i < nums.length - 1; i++){
            dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]);
        }

但是有人肯定会说

你怎么知道他一定偷第一个房子呢?

的确,万一不偷第一个房子而偷最后一个房子,这样钱更多呢?
那我们直接两种情况都求一下,然后取最大值,这个题不就出来了吗?
为了方便,我们直接把dp的操作写成一个函数,然后传进去要dp的起始和末尾坐标即可。

代码

class Solution {
    public int rob(int[] nums) {
        if(nums.length == 1){
            return nums[0];
        }
        if(nums.length == 2){
            return Math.max(nums[0], nums[1]);
        }
        int ans1 = func(nums, 0, nums.length - 1);
        int ans2 = func(nums, 1, nums.length);
        return Math.max(ans1, ans2);
    }
    private int func(int[] nums, int start, int end){
        int[] dp = new int[nums.length];
        dp[0] = nums[start];
        dp[1] = nums[start + 1];
        for(int i = start + 2; i < end; i++){
            dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[end - 1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值