470. A simple math problem

链接:http://acm.whu.edu.cn/weblearn/problem/470

线性递推首先考虑 矩阵快速幂

long long 的范围为 9*10^18。 

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define N 3
typedef long long LL;
 
LL n,m=11;
struct Matrix
{
    LL mat[N][N];
    Matrix()
    {
        memset(mat,0,sizeof(mat));
    }
};
 
Matrix mul(Matrix a,Matrix b)
{
    Matrix res;
    for(int i=0; i<N; i++)
        for(int j=0; j<N; j++)
        {
            for(int k=0; k<N; k++)
            {
                res.mat[i][j]+=a.mat[i][k]*b.mat[k][j];
                res.mat[i][j]%=m;
            }
        }
    return res;
}
 
Matrix pow_matrix(LL n,LL t)
{
    Matrix res;
    for(int i=0; i<N; i++)
        res.mat[i][i]=1;
    Matrix b; //每次矩阵快速幂前对矩阵进行改变,根据数据范围最多快速幂18次;
    b.mat[0][0]=n%m;
    b.mat[0][1]=b.mat[0][2]=b.mat[1][1]=b.mat[1][2]=b.mat[2][2]=1;
 
    LL y=t+1-n/10;
    while(y)
    {
        if(y&1)
            res=mul(res,b);
        y>>=1;
        b=mul(b,b);
    }
    return res;
}  //模板上的输入变量是:矩阵、数据长度;灵活运用模板,依题目而变(说着轻松)
 
int main()
{
    while(~scanf("%lld",&n))
    {
        Matrix ans;
 
        ans.mat[2][0]=1;
        int x[9]= {0,1,1,2,2,3,3,3,4};
        if(n<9)
        {
            printf("%d\n",x[n]);
            continue;
        }
 
        LL t=10;
        for(int i=1; i<=18; i++)
        {
            ans=mul(pow_matrix(t,t-1),ans);
            t*=10;
 
            if(t>n)  break;
        }
        ans=mul(pow_matrix(t,n),ans);
        printf("%lld\n",ans.mat[0][0]);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值