占优关系与最优反应

占优关系

弱占优与严格占优

定义:

  • 对所有的 z ∈ Θ , u i ( y i , z − i ) ≥ u i ( x i , z − i ) z \in\Theta,u_i(y_i,z_{-i})\ge u_i(x_i,z_{-i}) zΘ,ui(yi,zi)ui(xi,zi),并且对于某些 z ∈ Θ z \in\Theta zΘ,严格不等式成立,那么 y i ∈ Δ i y_i \in \Delta_i yiΔi弱占优 x i ∈ Δ i x_i \in \Delta_i xiΔi
  • 对所有的 z ∈ Θ , u i ( y i , z − i ) > u i ( x i , z − i ) z \in\Theta,u_i(y_i,z_{-i}) > u_i(x_i,z_{-i}) zΘ,ui(yi,zi)>ui(xi,zi),则有 y i ∈ Δ i y_i \in \Delta_i yiΔi严格占优 x i ∈ Δ i x_i \in \Delta_i xiΔi

简言之,博弈方1采取混合策略x时,其收益不小于采取混合策略y时的收益,则称为策略x弱占优y;博弈方1采取混合策略x时,其收益大于采取混合策略y时的收益,则称为策略x严格占优y;

重复剔除严格占优

这是反复剔除严格被占优策略的过程,比如:
A = [ 3 0 0 3 1 1 ] A=\left[\begin {matrix} 3 & 0\\ 0 & 3\\ 1 &1 \end{matrix} \right] A= 301031
x 1 = e 1 3 ∈ Δ 1 , y 1 = ( 1 2 , 1 2 , 0 ) ∈ Δ 1 x_1=e_1^3\in\Delta_1,y_1=(\frac{1}{2},\frac{1}{2},0)\in\Delta_1 x1=e13Δ1,y1=(21,21,0)Δ1,计算 u 1 ( x 1 , z 2 ) = 1 , u 1 ( y 1 , z 2 ) = 1 2 ⋅ x ⋅ 3 + 1 2 ⋅ 3 ⋅ ( 1 − x ) = 3 2 u_1(x_1,z_2)=1,u_1(y_1,z_2)=\frac{1}{2}\cdot x\cdot3+\frac{1}{2}\cdot3\cdot(1-x)=\frac{3}{2} u1(x1,z2)=1,u1(y1,z2)=21x3+213(1x)=23,那么对所有的 z 2 ∈ Δ 2 z_2\in\Delta_2 z2Δ2,有 u 1 ( x 1 , z 2 ) < u 2 ( y 1 , z 2 ) u_1(x_1,z_2)<u_2(y_1,z_2) u1(x1,z2)<u2(y1,z2)
即可剔除策略3

严格占优可解

G = ( I , S , π ) G=(I,S,\pi) G=(I,S,π),令 S D ⊂ S S^D\subset S SDS为非重复剔除严格被占优策略纯策略组合的子集,若该集合为单点集合则称该博弈严格占优可解。

最优反应

纯策略最优反应

定义 β i ( y ) = { h ∈ S i : u i ( e i h , y − i ) ≥ u i ( e i k , y − i ) , ∀ k ∈ S i } \beta_i(y)=\{h\in S_i:u_i(e_i^h,y_{-i})\ge u_i(e_i^k,y_{-i}),\forall k\in S_i\} βi(y)={hSi:ui(eih,yi)ui(eik,yi),kSi}

意思就是:对其他博弈方的每个策略组合 y ∈ Θ y\in\Theta yΘ,博弈方i均可以找出一个收益最高的纯策略 s i ∈ S , s i s_i\in S,s_i siS,si的集合即为博弈方i的纯策略最优反应对应 β : Θ → S i \beta:\Theta\rightarrow S_i β:ΘSi

u i ( x i , y − i ) = Σ k = 1 m i ( e i k , y − i ) x i k ≤ Σ k = 1 m i ( e i h , y − i ) x i k = u i ( e i h , y − i ) u_i(x_i,y_{-i})=\Sigma_{k=1}^{m_i}(e_i^k,y_{-i})x_{ik}\le \Sigma_{k=1}^{m_i}(e_i^h,y_{-i})x_{ik}=u_i(e_i^h,y_{-i}) ui(xi,yi)=Σk=1mi(eik,yi)xikΣk=1mi(eih,yi)xik=ui(eih,yi)

即:针对某个混合策略 y ∈ Δ y\in \Delta yΔ博弈方i采取混合策略的收益小于纯策略最优反应带来的收益。

混合策略最优反应

混合策略 x i x_i xi带来的收益最高。将博弈方i的混合策略最优反应对应 β ~ i : Θ → Δ i \widetilde{\beta}_i:\Theta\rightarrow\Delta_i β iΘΔi
β ~ i ( y ) = { x i ∈ Δ i : u i ( x i , y − i ) ≥ u i ( z i , y − i ) , ∀ z i ∈ Δ i } = { x i ∈ Δ i : x i h = 0 , ∀ h ∉ β i ( y ) } = { x i ∈ Δ i : C ( x i ) ⊂ β i ( y ) } \widetilde{\beta}_i(y)=\{x_i\in\Delta_i:u_i(x_i,y_{-i})\ge u_i(z_i,y_{-i}),\forall z_i\in\Delta_i\}\\ =\{x_i\in\Delta_i:x_{ih}=0,\forall h\notin\beta_i(y)\}\\ =\{x_i\in\Delta_i:C(x_i)\subset\beta_i(y)\} β i(y)={xiΔi:ui(xi,yi)ui(zi,yi),ziΔi}={xiΔi:xih=0,h/βi(y)}={xiΔi:C(xi)βi(y)}
β ~ i ( y ) \widetilde\beta_i(y) β i(y)为针对混合策略y的最优反应
请添加图片描述
图中也就是说,会有不同的混合策略对应着相同的最优反应。

组合混合策略最优反应对应 β : Θ → Θ \beta:\Theta\rightarrow\Theta β:ΘΘ 被定义为 β ~ ( y ) = X i ∈ I β ~ i ( y ) \widetilde{\beta}(y)=X_{i\in I}\widetilde{\beta}_i(y) β (y)=XiIβ i(y)
请添加图片描述
也就是说,混合策略最优反应 β ~ ( y ) \widetilde\beta(y) β (y)是包含各博弈方最优反应笛卡尔积的空间。
注:本文参考《演化博弈论》乔根·W·布威尔

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值