诱致的解映射

诱致在我理解当中是诱导,推导的意思,即通过某个映射推导出了另一个映射
C ∈ X C\in X CX 一般 X = R k X=R^k X=Rk,C是某个博弈方混合策略的单纯形或者该博弈的混合策略集合; ξ ( t , x 0 ) \xi(t,x^0) ξ(t,x0)为微分方程经过 x 0 x^0 x0的解; T ( x 0 ) ⊂ R T(x^0)\subset R T(x0)R为通过 x 0 x^0 x0的解得到的定义的开时间区间。
对于所有的 t ∈ T ( x 0 ) t \in T(x^0) tT(x0)总有 x 0 ∈ C x^0\in C x0C ξ ( t , x 0 ) ∈ C \xi (t,x^0)\in C ξ(t,x0)C,且 ξ ( t , x 0 ) \xi(t,x^0) ξ(t,x0)是全局的。

命题 6.1 解映射满足的条件

假设 x ⊂ X x\subset X xX开的, ϕ : X → R k \phi:X\rightarrow R^k ϕ:XRk是里普菲茨连续的,C是X的一个紧子集使得 ξ ( t , x 0 ) ∈ C \xi(t,x^0)\in C ξ(t,x0)C对所有 x 0 ∈ C x^0\in C x0C t ∈ T ( x 0 ) t\in T(x^0) tT(x0)都成立,那么引致的解映射 ξ : R × C → C \xi:R \times C\rightarrow C ξ:R×CC满足以下三个条件:
{ ξ ( 0 , x ) = x , ∀ x ∈ C ( 6.5 ) ξ [ t , ξ ( s , x ) ] = ξ ( t + s , x ) , ∀ x ∈ C , ∀ s , t ∈ R ( 6.6 ) ξ 连续( 6.7 ) \begin{cases} \xi(0,x)=x,\forall x\in C (6.5)\\ \xi[t,\xi(s,x)]=\xi(t+s,x),\forall x\in C,\forall s,t\in R(6.6)\\ \xi 连续(6.7) \end{cases} ξ(0,x)=x,xC6.5ξ[t,ξ(s,x)]=ξ(t+s,x),xC,s,tR6.6ξ连续(6.7
(6.5)说明,t=0时刻之后的状态等于初始状态
(6.6)说明, ξ \xi ξ经由s个时间后达到的状态,在此状态下经由t个时间单位达到的状态==经由t+s个时间单位达到的状态。
(6.6)说明,从任何固定时间t来看,通过 x 0 x^0 x0附近的任何初始状态 y 0 y^0 y0的解轨迹经过 x 0 x^0 x0的解轨迹。

D = ( R , C , ξ ) D=(R,C,\xi) D=(R,C,ξ)是状态空间C上的一个动力系统,关键概念有如下几个:

轨迹

通过状态 x 0 x^0 x0的解是 ξ ( ⋅ , x 0 ) \xi(·,x^0) ξ(⋅,x0)的图,可表示为
τ ( x 0 ) = { ( t , x ) ∈ R × C : x = ξ ( t , x 0 ) } \tau(x^0)=\{(t,x)\in R \times C:x=\xi(t,x^0)\} τ(x0)={(t,x)R×C:x=ξ(t,x0)}
解映射在整个时间坐标下的像:
γ ( x 0 ) = { 对某个 t ∈ R , x ∈ C : x = ξ ( t , x 0 ) } \gamma(x^0)=\{对某个t\in R,x\in C:x=\xi(t,x^0)\} γ(x0)={对某个tR,xC:x=ξ(t,x0)}
γ ( x 0 ) \gamma(x^0) γ(x0) τ ( x 0 ) \tau(x^0) τ(x0)到状态空间C的投影,是对整个时间坐标取状态空间的值。
解映射下非负时间轴的像:
γ + ( x 0 ) = { 对某个 t > 0 , x ∈ C : x = ξ ( t , x 0 ) } \gamma^{+}(x^0)=\{对某个t>0,x\in C:x=\xi(t,x^0)\} γ+(x0)={对某个t>0,xC:x=ξ(t,x0)}
存在子集 A ∈ C A\in C AC,集合 γ + ( A ) \gamma^{+}(A) γ+(A)被定义为满足 x 0 ∈ A x^0\in A x0A的所有准轨迹 γ + ( x 0 ) \gamma^{+}(x^0) γ+(x0)的并。
轨迹 γ \gamma γ+时间变量 t t t=解 ξ \xi ξ

集合的不变性与前向不变性

在这里插入图片描述
有个比较好理解的例子就是,一个小球放在圆锥里面,若给小球一个初速度,小球就会运动起来,运动轨迹唯一,最终停留在圆锥顶点处。圆锥就可以理解为一个前向不变集合,初速度就是流的大小和方向 ϕ ( x ) \phi(x) ϕ(x),运动轨迹就是 γ ( x 0 ) \gamma(x^0) γ(x0),最终的红点就是稳态。
在这里插入图片描述
此处转自https://blog.csdn.net/XSTX1996/article/details/82079317

稳态

在这里插入图片描述
稳态就是对于实数范围内的任意时刻t都是同一个状态,也就是说状态不变,流没有大小和方向,这样状态子集是一个不变单点集, γ ( x ) \gamma(x) γ(x)是一个单点集。(轨迹的集合就是状态子集A)

命题6.3 极限状态的稳态

如果 x , y ∈ C x,y \in C x,yC,并且 l i m t → ∞ ξ ( t , x ) = y lim_{t\rightarrow \infty}\xi(t,x)=y limtξ(t,x)=y,那么y是稳态。

稳定性

单个状态的Lyapunovn稳定和渐进稳定

在这里插入图片描述
命题 6.4 如果一个状态时lyapunovn稳定的,那么它是稳态的

集合的两个稳定

在这里插入图片描述
单点引申到集合有如下三个概念需注意

在这里插入图片描述

吸引域

在这里插入图片描述
吸引子就相当于一个黑洞,某一个点 x 0 x^0 x0的轨迹绕着黑洞在转,最终趋向于集合A,这样点的集合称为A的吸引域。

本文参考《演化博弈论》乔根·W·布威尔 [著]

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值