The Values You Can Make CodeForces - 687C (dp)

Pari wants to buy an expensive chocolate from Arya. She has n coins, the value of the i-th coin is ci. The price of the chocolate is k, so Pari will take a subset of her coins with sum equal to k and give it to Arya.

Looking at her coins, a question came to her mind: after giving the coins to Arya, what values does Arya can make with them? She is jealous and she doesn’t want Arya to make a lot of values. So she wants to know all the values x, such that Arya will be able to make x using some subset of coins with the sum k.

Formally, Pari wants to know the values x such that there exists a subset of coins with the sum k such that some subset of this subset has the sum x, i.e. there is exists some way to pay for the chocolate, such that Arya will be able to make the sum x using these coins.

Input
The first line contains two integers n and k (1  ≤  n, k  ≤  500) — the number of coins and the price of the chocolate, respectively.

Next line will contain n integers c1, c2, …, cn (1 ≤ ci ≤ 500) — the values of Pari’s coins.

It’s guaranteed that one can make value k using these coins.

Output
First line of the output must contain a single integer q— the number of suitable values x. Then print q integers in ascending order — the values that Arya can make for some subset of coins of Pari that pays for the chocolate.

Example
Input
6 18
5 6 1 10 12 2
Output
16
0 1 2 3 5 6 7 8 10 11 12 13 15 16 17 18
Input
3 50
25 25 50
Output
3
0 25 50

大致题意:给你n个数,让你选出一些数使它们的和为k,然后问这些数所能构成的数有哪些?

思路:假设dp[i][j]表示 选择的数的和为i时,是否能构成数j。1表示能,0表示不能。那么,当dp[i-x][j]=1时(x为和为i的子集中的一个数)dp[i][j]=dp[i][j+x]=1.

代码如下

#include <iostream> 
#include <cstring>
#include <cstdio>
#include <vector>
#include<algorithm>
using namespace std; 

#define LL long long 
vector<int> ans;
int a[505];
int dp[505][505];
int main()
{
    int n,k;
    scanf("%d%d",&n,&k);
    for(int i=1;i<=n;i++)
    scanf("%d",&a[i]);

    sort(a+1,a+1+n);
    dp[0][0]=1;
    for(int i=1;i<=n;i++)
    for(int j=k;j>=a[i];j--)
    for(int l=j-a[i];l>=0;l--)
    if(dp[j-a[i]][l])
    dp[j][l]=dp[j][l+a[i]]=1;

    for(int i=0;i<=k;i++)
    if(dp[k][i]) ans.push_back(i);

    printf("%d\n",ans.size());
    for(int i=0;i<ans.size();i++)
    printf("%d ",ans[i]);

    return 0; 
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值