最长上升子序列:dp解法

给定一个无序的整数数组,找到其中最长上升子序列的长度。

示例:

输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。

解题思路

之前没有想清楚,以为单重循环就能解决问题。后来发现不行的,要解决f(i)的问题,必须要f(1)、f(2)……、f(i-1)的问题都解决了才行,而这前i-1个问题的解决,其实是需要多加一层循环的。
还是对这个问题理解不深刻,近期多思考下其中的关键点,两周后再来重做下看看。

代码

class Solution(object):
    def lengthOfLIS(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        # 将f(nums,i)定义为到下表为i为止的最长上升子串,下标i其实意味着共有i+1个字符
        # 将问题拆解为i个子问题,知道前面i个子序列的返回值,就能得到第i+1个序列的返回值
        n=len(nums)
        if not nums:
            return 0
        dp=[1]*n
        for i in range(n):
            for j in range(i):
                if nums[j]<nums[i]:
                    dp[i]=max(dp[i],dp[j]+1)
        return max(dp)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值