【开源代码、数据集】大尺度场景下使用时间图优化的多传感器融合定位 onlineFGO

论文提出了一种名为onlineFGO的在线连续时间因子图优化方法,用于在大规模环境中实现车辆的鲁棒定位。通过融合多种传感器数据,包括GNSS和LiDAR里程计,该方法能在没有状态对齐的情况下实时处理传感器测量。在亚琛市的实际测试中,onlineFGO表现出2D误差0.99m的高精度和一致性。此外,代码和数据集已开源,以便进一步研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下内容来自从零开始机器人SLAM知识星球 每日更新内容

点击领取学习资料 → [机器人SLAM学习资料大礼包]

#论文# onlineFGO: Online Continuous-Time Factor Graph Optimization with Time-Centric Multi-Sensor Fusion for Robust Localization in Large-Scale Environments
论文地址:https://arxiv.org/abs/2211.05400
作者单位:德国亚琛工业大学
开源代码:https://github.com/rwth-irt/onlineFGO.git
由于在城市地区进行准确和一致的车辆定位具有挑战性。在本文中,我们提出了 onlineFGO,这是一种新颖的基于时间的图优化定位方法,它将多个传感器里程计与车辆定位任务的连续时间轨迹表示相融合。我们通过按时确定地创建状态来概括独立于任何空间传感器测量的图构造。由于连续时间中的轨迹表示可以在任意时间查询状态,因此可以在图上对传入的传感器测量进行分解,而无需状态对齐。我们整合了不同的 GNSS 观测:伪距、增量距和时差载波相位 (TDCP),以确保全局参考并融合来自 LiDAR 里程计的相对运动,以提高定位一致性,而 GNSS 观测不可用。在包含不同城市场景的亚琛市的真实世界测量活动中,对一般性能、不同因素的影响和超参数设置进行了实验。我们的结果显示平均 2D 误差为 0.99m,并且在城市场景中的状态估计是一致的。
在这项工作中,我们将之前的研究扩展到具有确定性 FGO 的以时间为中心的多传感器融合方法,该方法解决了大规模环境中的鲁棒定位问题。与我们之前的工作相比,我们使用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值