什么是计算机视觉

      计算机视觉这种技术可以将精致图像或视频数据转换为一种决策或新的表示。

      因为我们是被赋予了视觉的生物,所以很容易误认为“计算机视觉也是一种简单的任务”,计算机视觉究竟有多困难呢?请说说你是如何从一张图像中观察到一辆车的。你最开始的直觉可能具有很强的误导性。人类的大脑将视觉信号划分为许多通道,好让不同的信息流入大脑。大脑已经被证明有一套注意力系统,在基于任务的方式上,通过图像的重要部分检验其它区域的估计。在视觉信息流中存在巨量的信息反馈,并且到现在我们对此过程也知之甚少。肌肉控制的感知器和其它所有感官都窜在这广泛的相互联系,这让大脑能够利用人在世界上多年生活经验所产生的交叉联想,大脑中的反馈循环将反馈传递到每一个处理过程,包括人体的感知器官(眼睛),通过虹膜从物理上控制光线的量来调节视网膜对物体表面的感知。

     然而在机器视觉系统中,计算机会从相机或者硬盘接受栅格状排列的数字,也就是说,最关键的是,机器视觉系统不存在一个预先建立的模式识别机制。没有自动控制焦距和光圈,也不能将多年的经验联系在一起。大部分的视觉系统都还处于一个非常朴素原始的阶段。

     视觉得不适定问题,实际上这一问题,正如我门之前所提到的,用困难已经不足以形容它了,他在很多情况下根本不可能解决,给定一个对于3D世界的二维(2D)观测,就不存在一个唯一的方式重建三维信号,开始数据是完美的。即使数据是完美的,相同的二维图像也可能表示一个无限的3D场景组合中的任一一种情况,而且,数据会被噪声和畸变所污染。这样的污染源于显示生活中的很多方面(天气,光线,折射率和运动),还有传感器中的电路噪声以及其他的一些电路系统影响,还有在采集之后对于图像压缩所产生的影响。

    计算机视觉所面临的下一个问题就是噪声,我们一般使用统计的方法来对抗噪声。比如,我们很难通过单独的像素点和他的相邻像素点判断其是一个边缘点,但如果观察它在一个区域的统计规律,边缘检测就会变得更加简单了。一个真正地边缘应该表现为一个区域内一连串独立的点,所有点的朝向都与其最接近的点保持一致。我们也可以通过时间上的累计统计对噪声进行抑制,当然也有通过现有数据建立噪声模型来消除噪声的方法。例如,如果透镜畸变很容易建模,我们只需要学习一个简单的多项式模型来描述畸变就可以几乎完美矫正失真图像。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值