【BZOJ 3160】万径人踪灭

题目链接

题意简述

求出一个 01 串中具有中心对称轴的回文子序列个数,要求不能是回文子串

Sol

显然求出回文子序列后减掉回文子串个数即可
回文子串个数直接马拉车

关键是前面的要怎么求

我们可以考虑枚举一个对称轴,那么如果对称轴左右两边有一组对应字符相同,那么当前对称轴的答案显然乘上一个2,代表这一组是否选择

那么问题变成需要快速求出关于一根轴对称的字符对数
对于一根对称轴而言,一组字符能产生贡献,当且仅当他们相同,并且下表之和的一半等于对称轴下标(下标可以不为整数)

用式子表示就是,对于 s i , s j s_i,s_j si,sj ,若对称轴为 X X X, 当 s i = s j 且 i + j = = 2 X s_i=s_j且i+j==2X si=sji+j==2X时能够产生贡献
这后面就是一个卷积的形式了,而对于相同的条件,则只需要把0 1分开考虑,当前考虑的字符的系数设为1,反之为 0 ,然后FFT卷积即可求出符合条件的组数

实际上由于一根对称轴最多只有 n/2 组,所以 NTT 应该也是可行的

代码:

#include<bits/stdc++.h>
using namespace std;
const int N=4e5+10;
typedef long long ll;
typedef double db;
const int mod=1e9+7;
const int INV=500000004;
const db PI=acos(-1);
#define Co Complex
char s[N];
int a[N];
struct Complex{
	db x,y;
	Co(db x1=0.0,db y1=0.0){x=x1;y=y1;}
	inline Co operator +(const Co &b){return Co(x+b.x,y+b.y);}
	inline Co operator -(const Co &b){return Co(x-b.x,y-b.y);}
	inline Co operator *(const Co &b){return Co(x*b.x-y*b.y,x*b.y+y*b.x);}
};
Co A[N],B[N];
int n,l,rader[N],r[N],Pow2[N];
char t[N];
inline int Sum(int a,int b){a+=b;if(a>=mod) a-=mod;return a;}
inline ll Manacher(){
	int len=0;
	t[len=1]='!';
	for(int i=0;i<=n;++i) {t[++len]=s[i];t[++len]='!';}
	int pos=1,mx=1;
	r[1]=0;
	for(int i=2;i<=len;++i){
		r[i]=(mx>=i? min(r[pos-(i-pos)],mx-i):0);
		while(i+r[i]<len&&i-r[i]>=2&&t[i+r[i]+1]==t[i-r[i]-1]) ++r[i];
		if(i+r[i]>mx) mx=i+r[i],pos=i;
	}
	ll ans=0;
	for(int i=1;i<=len;++i) ans=Sum(ans,(r[i]+1)/2);
	return ans;
}
inline void FFT(Co *a,int n,int f){
	for(int i=0;i<n;++i) if(rader[i]>i) swap(a[rader[i]],a[i]);
	for(int i=1;i<n;i<<=1){
		Co W(cos(PI/i),f*sin(PI/i));
		for(int p=i<<1,j=0;j<n;j+=p){
			Co w(1,0);
			for(int k=0;k<i;++k,w=w*W){
				Co X=a[j+k],Y=w*a[j+k+i];
				a[j+k]=X+Y;a[j+k+i]=X-Y;
			}
		}
	}
	if(f==-1) for(int i=0;i<n;++i) a[i].x/=n;
	return;
}
int main()
{
	scanf("%s",s);
	n=strlen(s)-1;Pow2[0]=1;
	for(int i=0;i<=n;++i) a[i]=s[i]-'a',Pow2[i+1]=Sum(Pow2[i],Pow2[i]);
	ll ret=Manacher()%mod;
	n<<=1;
	int L=0,up=0;
	for(L=1,up=0;L<=n;++up,L<<=1);
	for(int i=1;i<L;++i) rader[i]=(rader[i>>1]>>1)|((i&1)<<up-1);
	for(int i=0;i<=n/2;++i) A[i].x=a[i],B[i].x=a[i]^1;
	FFT(A,L,1);FFT(B,L,1);
	for(int i=0;i<L;++i) A[i]=A[i]*A[i],B[i]=B[i]*B[i];
	FFT(A,L,-1);FFT(B,L,-1);
	ll ans=0;
	for(int i=0;i<=n;++i) {
		int sum=(int(A[i].x+0.500)+1)/2+(int(B[i].x+0.500)+1)/2;
		ans=Sum(ans,Pow2[sum])-1;
		if(ans<0) ans+=mod;
	}
	printf("%lld\n",(ans-ret+mod)%mod);
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值