转一篇几年前写的旧文章【http://y-x.iteye.com/admin/blogs/2012810】
Search is a lot about discovery—the basic human need to learn and broaden your horizons. But searching still requires a lot of hard work by you, the user. So today I’m really excited to launch the Knowledge Graph, which will help you discover new information quickly and easily.
搜索更多的和发现相关-学习基本的用户需求和扩展眼界。但是,搜索仍然要求你来做一些比较困难的工作,所以,现在我非常高兴能够从事知识图谱,一个可以帮助你快速和简单发现信息的技术。
Take a query like [taj mahal]. For more than four decades, search has essentially been about matching keywords to queries. To a search engine the words [taj mahal] have been just that—two words.
以query[taj mahal].为例,在过去的四十年中,搜索的本质是匹配query的关键词,对于搜索引擎,输入的query[taj mahal].被认为是两个单词。
But we all know that [taj mahal] has a much richer meaning. You might think of one of the world’s most beautiful monuments, or a Grammy Award-winning musician, or possibly even a casino in Atlantic City, NJ. Or, depending on when you last ate, the nearest Indian restaurant. It’s why we’ve been working on an intelligent model—in geek-speak, a “graph”—that understands real-world entities and their relationships to one another: things, not strings.
但是我们都知道[taj mahal]这个query有丰富的含义。你可以认为它表示世界上最壮美的纪念碑,或者格莱美奖的获奖音乐家,又或者是新泽西区近大西洋城市的一个俱乐,又或者是离你最近的印第安餐厅。这就是为什么我们需要开发一个新的模型,图谱-可以理解真实世界的实体和实体之间的关联:实体而不是字符串。
The Knowledge Graph enables you to search for things, people or places that Google knows about—landmarks, celebrities, cities, sports teams, buildings, geographical features, movies, celestial objects, works of art and more—and instantly get information that’s relevant to your query. This is a critical first step towards building the next generation of search, which taps into the collective intelligence(集体智慧) of the web and understands the world a bit more like people do.
知识图谱可以使你搜索任何谷歌索引的事物、人和地方,比如:标志性性建筑、名人、城市、球队、建筑、地理特征、电影、神灵和艺术品等,并迅速获得和检索query的关联信息。这是迈向下一代搜索引擎的重要一步,走向互联网的集体智慧,像人类一样理解世界。
Google’s Knowledge Graph isn’t just rooted in public sources such as Freebase, Wikipedia and the CIA World Factbook. It’s also augmented at a much larger scale—because we’re focused on comprehensive breadth and depth. It currently contains more than 500 million objects, as well as more than 3.5 billion facts about and relationships between these different objects. And it’s tuned based on what people search for, and what we find out on the web.
谷歌的知识图谱不只是针对公共的数据资源,比如Freebase、维基百科和CIA世界概况,他面向的是一个大的范围,因为我们面对的是理解的广度和深度。当前谷歌已经收录了5亿多对象实体,350亿实体之间的关联信息