数学常用公式

三角函数常用公式

  • s e c 2 θ = 1 + t g 2 θ sec^2\theta = 1+tg^2\theta sec2θ=1+tg2θ

倍角公式

  1. s i n 2 θ = 2 s i n θ c o s θ sin2\theta=2sin\theta cos\theta sin2θ=2sinθcosθ
  2. c o s 2 θ = c o s 2 θ − s i n 2 θ cos2\theta=cos^2\theta-sin^2\theta cos2θ=cos2θsin2θ

半角公式

  1. s i n 2 θ 2 = 1 − c o s θ 2 sin^2\frac{\theta}{2}=\frac{1-cos\theta}{2} sin22θ=21cosθ
  2. c o s 2 θ 2 = 1 + c o s θ 2 cos^2\frac{\theta}{2}=\frac{1+cos\theta}{2} cos22θ=21+cosθ

和差公式

  1. s i n ( α + β ) = s i n α c o s β + c o s α s i n β sin(\alpha+\beta)=sin\alpha cos\beta+cos\alpha sin\beta sin(α+β)=sinαcosβ+cosαsinβ
  2. s i n ( α − β ) = s i n α c o s β − c o s α s i n β sin(\alpha-\beta)=sin\alpha cos\beta-cos\alpha sin\beta sin(αβ)=sinαcosβcosαsinβ
  3. c o s ( α + β ) = c o s α c o s β − s i n α s i n β cos(\alpha+\beta)=cos\alpha cos\beta-sin\alpha sin\beta cos(α+β)=cosαcosβsinαsinβ
  4. c o s ( α − β ) = c o s α c o s β + s i n α s i n β cos(\alpha-\beta)=cos\alpha cos\beta+sin\alpha sin\beta cos(αβ)=cosαcosβ+sinαsinβ

积化和差公式

  1. s i n α c o s β = 1 2 [ s i n a ( α + β ) + s i n ( α − β ) ] sin\alpha cos\beta=\frac{1}{2}[sina(\alpha+\beta)+sin(\alpha-\beta)] sinαcosβ=21[sina(α+β)+sin(αβ)]
  2. c o s α c o s β = 1 2 [ c o s ( α + β ) + c o s ( α − β ) ] cos\alpha cos\beta=\frac{1}{2}[cos(\alpha+\beta)+cos(\alpha-\beta)] cosαcosβ=21[cos(α+β)+cos(αβ)]
  3. s i n α s i n a β = − 1 2 [ c o s ( α + β ) − c o s ( α − β ) ] sin\alpha sina\beta=-\frac{1}{2}[cos(\alpha+\beta)-cos(\alpha-\beta)] sinαsinaβ=21[cos(α+β)cos(αβ)]

和差化积

  1. s i n α + s i n β = 2 s i n ( α + β 2 ) c o s ( α − β 2 ) sin\alpha+sin\beta=2sin(\frac{\alpha+\beta}{2})cos(\frac{\alpha-\beta}{2}) sinα+sinβ=2sin(2α+β)cos(2αβ)
  2. s i n α − s i n β = 2 s i n ( α − β 2 ) c o s ( α + β 2 ) sin\alpha-sin\beta=2sin(\frac{\alpha-\beta}{2})cos(\frac{\alpha+\beta}{2}) sinαsinβ=2sin(2αβ)cos(2α+β)
  3. c o s α + c o s β = 2 c o s ( α + β 2 ) c o s ( α − β 2 ) cos\alpha+cos\beta=2cos(\frac{\alpha+\beta}{2})cos(\frac{\alpha-\beta}{2}) cosα+cosβ=2cos(2α+β)cos(2αβ)
  4. c o s α − c o s β = − 2 s i n ( α + β 2 ) s i n ( α − β 2 ) cos\alpha-cos\beta=-2sin(\frac{\alpha+\beta}{2})sin(\frac{\alpha-\beta}{2}) cosαcosβ=2sin(2α+β)sin(2αβ)

万能公式

  1. s i n x = 2 t g x 2 1 + t g 2 x 2 sinx=\frac{2tg\frac{x}{2}}{1+tg^2\frac{x}{2}} sinx=1+tg22x2tg2x
  2. c o s x = 1 − t g 2 x 2 1 + t g 2 x 2 cosx=\frac{1-tg^2\frac{x}{2}}{1+tg^2\frac{x}{2}} cosx=1+tg22x1tg22x
  3. s i n x = t g x 1 + t g 2 x sinx=\frac{tgx}{\sqrt{1+tg^2x}} sinx=1+tg2x tgx
  4. c o s x = 1 1 + t g 2 x cosx=\frac{1}{\sqrt{1+tg^2x}} cosx=1+tg2x 1

导数公式

  1. ( e x ) ′ = e x (e^x)^{'}=e^x (ex)=ex
  2. ( a x ) ′ = a x l n a (a^x)^{'}=a^xlna (ax)=axlna
  3. ( l n x ) ′ = 1 x (lnx)^{'}=\frac{1}{x} (lnx)=x1
  4. ( l o g a x ) ′ = 1 x l n a (loga^x)^{'}=\frac{1}{xlna} (logax)=xlna1
  5. ( x ) ′ = 1 2 x (\sqrt{x})^{'}=\frac{1}{2\sqrt{x}} (x )=2x 1
  6. ( t g x ) ′ = s e c 2 x (tgx)^{'}=sec^2x (tgx)=sec2x
  7. ( c t x ) ′ = − s c c 2 x (ctx)^{'}=-scc^2x (ctx)=scc2x
  8. ( s e c x ) ′ = s e c x t g x (secx)^{'}=secxtgx (secx)=secxtgx
  9. ( c s c x ) ′ = − c s c x c t g x (cscx)^{'}=-cscxctgx (cscx)=cscxctgx

积分公式

  1. ∫ 1 1 + x 2 d x = a r c t g x + C = − a r c c t g x + C \int\frac{1}{1+x^2}dx=arctgx+C=-arcctgx+C 1+x21dx=arctgx+C=arcctgx+C
  2. ∫ 1 1 − x 2 d x = a r c s i n x + C \int\frac{1}{\sqrt{1-x^2}}dx=arcsinx+C 1x2 1dx=arcsinx+C
  3. ∫ s e c 2 x d x = t g x + C \int sec^2xdx=tgx+C sec2xdx=tgx+C
  4. ∫ 1 2 x d x = x + C \int\frac{1}{2\sqrt{x}}dx=\sqrt{x}+C 2x 1dx=x +C
  5. ∫ 1 x d x = l n ∣ x ∣ + C \int\frac{1}{x}dx=ln|x|+C x1dx=lnx+C
  6. ∫ c s c 2 x d x = − c t g x + C \int csc^2xdx=-ctgx+C csc2xdx=ctgx+C
  7. ∫ s e c x d x = l n ∣ s e c x + t g x ∣ + C \int secxdx=ln|secx+tgx|+C secxdx=lnsecx+tgx+C
  8. 若在区域D上有,f(x,y) <= g(x,y) => ∬ D f ( x , y ) d σ ≤ ∬ D g ( x , y ) d σ \iint_{D}f(x,y)d\sigma \le \iint_{D}g(x,y)d\sigma Df(x,y)dσDg(x,y)dσ
  9. ∣ ∬ D f ( x , y ) d σ ∣ ≤ ∬ D ∣ f ( x , y ) ∣ d σ |\iint_{D}f(x,y)d\sigma|\le\iint_{D}|f(x,y)|d\sigma Df(x,y)dσDf(x,y)dσ

欧拉公式

e i β = c o s β + i s i n β e^{i\beta}=cos\beta+isin\beta eiβ=cosβ+isinβ

在区域D上连续的函数一定可积

大数定理/中心极限定理

依概率收敛于

X n → P A X_n\rightarrow^P A XnPA
lim ⁡ n − > ∞ P { ∣ X n − A ∣ < ϵ } = 1 \lim_{n->\infty}P\{|X_n-A|<\epsilon\}=1 n>limP{XnA<ϵ}=1

切比雪夫不等式

P { X ≥ ϵ } ≤ E ( X ) ϵ P\{X\ge\epsilon\}\le\frac{E(X)}{\epsilon} P{Xϵ}ϵE(X)
P { ∣ X − E ( X ) ∣ ≤ ϵ } ≥ σ 2 ϵ 2 P\{|X-E(X)|\le\epsilon\}\ge\frac{\sigma^2}{\epsilon^2} P{XE(X)ϵ}ϵ2σ2

大数定理

lim ⁡ n − > ∞ P { ∣ X − E ( X ) ∣ < ϵ } = 1 \lim_{n->\infty}P\{|X-E(X)|<\epsilon\}=1 n>limP{XE(X)<ϵ}=1
lim ⁡ n − > ∞ P { ∣ E ( X ) − μ ∣ < ϵ } = 1 \lim_{n->\infty}P\{|E(X)-\mu|<\epsilon\}=1 n>limP{E(X)μ<ϵ}=1

  • 若分布为伯努利分布,则有:
    lim ⁡ n − > ∞ P { ∣ n A n − p ∣ < ϵ } = 1 \lim_{n->\infty}P\{|\frac{n_A}{n}-p|<\epsilon\}=1 n>limP{nnAp<ϵ}=1

中心极限定理

  • 随机变量相互独立
    lim ⁡ n − > ∞ P { ∑ ( X i − μ i ) S n ≤ x } = Φ ( x ) ; S n = ∑ σ 2 \lim_{n->\infty}P\{\frac{\sum(X_i-\mu_i)}{S_n}\le x\}=\Phi(x); S_n=\sqrt{\sum\sigma^2} n>limP{Sn(Xiμi)x}=Φ(x);Sn=σ2
  • 随机变量相互独立,同分布
    lim ⁡ n − > ∞ P { ∑ X i − n μ σ n ≤ x } = Φ ( x ) \lim_{n->\infty}P\{\frac{\sum X_i-n\mu}{\sigma\sqrt{n}}\le x\}=\Phi(x) n>limP{σn Xinμx}=Φ(x)
  • 随机变量相互独立,满足B(n,p):
    lim ⁡ n − > ∞ P { ∑ X i − n p n p ( 1 − p ) ≤ x } = Φ ( x ) \lim_{n->\infty}P\{\frac{\sum X_i-np}{\sqrt{np(1-p)}}\le x\}=\Phi(x) n>limP{np(1p) Xinpx}=Φ(x)

伽马函数- Γ ( a ) \Gamma(a) Γ(a)

Γ ( a ) = ∫ 0 + ∞ e − x x ( a − 1 ) d x \Gamma(a)=\int_{0}^{+\infty}e^{-x}x^(a-1)dx Γ(a)=0+exx(a1)dx
Γ ( n ) = ( n − 1 ) Γ ( n − 1 ) \Gamma(n)=(n-1)\Gamma(n-1) Γ(n)=(n1)Γ(n1)
Γ ( 1 2 ) = π \Gamma(\frac{1}{2})=\sqrt{\pi} Γ(21)=π

数量统计分布函数

卡方分布- ϰ 2 ( n ) \varkappa^2(n) ϰ2(n)

  • 定义:标准正态分布的平方和。 ϰ 2 ( n ) = ∑ i = 1 n [ N i ( 0 , 1 ) ] 2 \varkappa^2(n)=\sum_{i=1}^{n}[N_i(0,1)]^2 ϰ2(n)=i=1n[Ni(0,1)]2
  • 期望值=n ;方差=2n
  • 性质
    1. 可加性: ϰ 2 ( m ) + ϰ 2 ( n ) = ϰ 2 ( m + n ) \varkappa^2(m)+\varkappa^2(n)=\varkappa^2(m+n) ϰ2(m)+ϰ2(n)=ϰ2(m+n)

T分布- T ( n ) T(n) T(n)

  • 定义 T ( n ) = N ( 0 , 1 ) ϰ 2 ( n ) / n T(n)=\frac{N(0,1)}{\sqrt{\varkappa^2(n)/n}} T(n)=ϰ2(n)/n N(0,1)
  • 期望值=0;方差= n n − 2 , ( n > 2 ) \frac{n}{n-2}, (n>2) n2n,(n>2)

F分布- F ( m , n ) F(m,n) F(m,n)

  • 定义 F ( m , n ) = ϰ 2 ( m ) / m ϰ 2 ( n ) / n F(m,n)=\frac{\varkappa^2(m)/m}{\varkappa^2(n)/n} F(m,n)=ϰ2(n)/nϰ2(m)/m
  • 期望值= n n − 2 \frac{n}{n-2} n2n; 方差= 2 n 2 ( n + m − 2 ) m ( n − 2 ) ( n − 4 ) , ( n > 4 ) \frac{2n^2(n+m-2)}{m(n-2)(n-4)},(n>4) m(n2)(n4)2n2(n+m2),(n>4)
  • 性质
    1. 1 F ( m , n ) = F ( n , m ) \frac{1}{F(m,n)}=F(n,m) F(m,n)1=F(n,m)
    2. [ t ( n ) ] 2 = F ( 1 , n ) [t(n)]^2=F(1,n) [t(n)]2=F(1,n)

单正态总体抽样分布

总体分布: N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)
X ‾ = N ( μ , σ 2 n ) \overline{X}=N(\mu,\frac{\sigma^2}{n}) X=N(μ,nσ2)
X ‾ − μ σ / n = N ( 0 , 1 ) \frac{\overline{X}-\mu}{\sigma/\sqrt{n}}=N(0,1) σ/n Xμ=N(0,1)
X ‾ − μ S / n = T ( n − 1 ) \frac{\overline{X}-\mu}{S/\sqrt{n}}=T(n-1) S/n Xμ=T(n1)
( n − 1 ) S 2 σ 2 = ϰ 2 ( n − 1 ) \frac{(n-1)S^2}{\sigma^2}=\varkappa^2(n-1) σ2(n1)S2=ϰ2(n1)

两个正态总体抽样分布

总体分布: X~ N ( μ 1 , σ 1 2 ) N(\mu_1,\sigma_1^2) N(μ1,σ12) Y~ N ( μ 2 , σ 2 2 ) N(\mu_2,\sigma_2^2) N(μ2,σ22)

( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) σ 1 2 / n 1 + σ 2 2 / n 2 \frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{\sigma_1^2/n_1+\sigma_2^2/n_2}} σ12/n1+σ22/n2 (XY)(μ1μ2)~ N ( 0 , 1 ) N(0,1) N(0,1)
S 1 2 / S 2 2 σ 1 2 / σ 2 2 \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} σ12/σ22S12/S22~ F ( n 1 − 1 , n 2 − 1 ) F(n_1-1,n_2-1) F(n11,n21)
σ 1 2 = σ 2 2 = σ 2 \sigma_1^2=\sigma_2^2=\sigma^2 σ12=σ22=σ2,
S w = n 1 − 1 n 1 + n 2 − 2 S 1 + n 2 − 1 n 1 + n 2 − 2 S 2 S_w=\frac{n_1-1}{n_1+n_2-2}S_1+\frac{n_2-1}{n_1+n_2-2}S_2 Sw=n1+n22n11S1+n1+n22n21S2
( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) S w 1 / n 1 + 1 / n 2 \frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{S_w\sqrt{}1/n_1+1/n_2} Sw 1/n1+1/n2(XY)(μ1μ2)~ T ( n 1 + n 2 − 2 ) T(n_1+n_2-2) T(n1+n22)

抽样分布的参数估计

点估计

  1. 矩估计
  2. 极大似然估计
  3. 估计的评价标准: 无偏性,有效性,相合性

置信区间

  1. 正态分布总体均值置信区间
    1.1 方差已知情况
    ( X ‾ − u α / 2 σ n , X ‾ + u α / 2 σ n ) (\overline{X}-u_{\alpha/2}\frac{\sigma}{\sqrt{n}},\overline{X}+u_{\alpha/2}\frac{\sigma}{\sqrt{n}}) (Xuα/2n σ,X+uα/2n σ)
    1.2 方差未知情况( σ 1 2 = σ 2 2 = σ \sigma_1^2=\sigma_2^2=\sigma σ12=σ22=σ
    ( X ‾ − t α / 2 S n , X ‾ + t α / 2 S n ) (\overline{X}-t_{\alpha/2}\frac{S}{\sqrt{n}},\overline{X}+t_{\alpha/2}\frac{S}{\sqrt{n}}) (Xtα/2n S,X+tα/2n S)

  2. 正态分布总体方差置信区间
    ( ( n − 1 ) S 2 ϰ α / 2 2 , ( n − 1 ) S 2 ϰ 1 − α / 2 2 ) (\frac{(n-1)S^2}{\varkappa^2_{\alpha/2}},\frac{(n-1)S^2}{\varkappa^2_{1-\alpha/2}}) (ϰα/22(n1)S2,ϰ1α/22(n1)S2)

  3. 两个正态分布总体均值差置信区间
    3.1 方差已知情况
    ( X ‾ − Y ‾ − u α / 2 σ 1 2 n 1 + σ 2 2 n 2 , X ‾ − Y ‾ + u α / 2 σ 1 2 n 1 + σ 2 2 n 2 ) (\overline{X}-\overline{Y}-u_{\alpha/2}\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}},\overline{X}-\overline{Y}+u_{\alpha/2}\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}) (XYuα/2n1σ12+n2σ22 ,XY+uα/2n1σ12+n2σ22 )
    3.2 方差未知情况( σ 1 2 = σ 2 2 = σ \sigma_1^2=\sigma_2^2=\sigma σ12=σ22=σ
    ( X ‾ − Y ‾ − t α / 2 S w 1 n 1 + 1 n 2 , X ‾ − Y ‾ + t α / 2 S w 1 n 1 + 1 n 2 ) (\overline{X}-\overline{Y}-t_{\alpha/2}S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}},\overline{X}-\overline{Y}+t_{\alpha/2}S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}) (XYtα/2Swn11+n21 ,XY+tα/2Swn11+n21 )

  4. 两个正态分布总体方差的置信区间
    ( S 1 2 S 2 2 1 F α / 2 ( n 1 − 1 , n 2 − 1 ) , S 1 2 S 2 2 1 F 1 − α / 2 ( n 1 − 1 , n 2 − 1 ) ) (\frac{S_1^2}{S_2^2}\frac{1}{F_{\alpha/2}(n_1-1,n_2-1)},\frac{S_1^2}{S_2^2}\frac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)}) (S22S12Fα/2(n11,n21)1,S22S12F1α/2(n11,n21)1)

  • 12
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值