概率统计知识点

随机试验

  • 基本概念:样本空间,样本点,事件
  • 事件运算交,差,并,补,德摩根定律
  • 频率/概率 A n n \frac{A_n}{n} nAn
    • 概率类型:古典概型(等概率,离散),几何概型(连续,面积)
    • 联合概率
    • 边缘概率
    • 条件概率
      • 乘法公式: P ( A B ) = P ( B ∣ A ) P ( A ) P(AB)=P(B|A)P(A) P(AB)=P(BA)P(A)
      • 全概率公式: P ( B ) = P ( A 1 ) P ( B ∣ A 1 ) + . . . + P ( A n ) P ( B ∣ A n ) P(B)=P(A_1)P(B|A_1)+...+P(A_n)P(B|A_n) P(B)=P(A1)P(BA1)+...+P(An)P(BAn)
      • 贝叶斯公式: P ( A 1 ∣ B ) = P ( B ∣ A 1 ) P ( A 1 ) P ( B ) P(A_1|B)=\frac{P(B|A_1)P(A_1)}{P(B)} P(A1B)=P(B)P(BA1)P(A1)
    • 事件相互独立/不相容

随机变量

  • 离散型随机变量
    • 0-1分布(伯努利)
      • 分布律: p k ( 1 − p ) 1 − k p^k(1-p)^{1-k} pk(1p)1k
      • 数学期望:p
      • 方差:p(1-p)
    • 二项分布(n重伯努利)
      • 分布律: p k ( 1 − p ) n − k p^k(1-p)^{n-k} pk(1p)nk
      • 数学期望:p
      • 方差:np(1-p)
    • 泊松分布
      • 分布律: λ k k ! e − λ \frac{\lambda^k}{k!}e^{-\lambda} k!λkeλ
      • 数学期望: λ \lambda λ ( λ ≈ n p \lambda \approx np λnp)
      • 方差: λ \lambda λ
    • 几何分布
      • 分布律: p ( 1 − p ) k − 1 p(1-p)^{k-1} p(1p)k1
      • 说明:第k次发生事件的概率
    • 超几何分布
      • 分布律: ( M m ) ( N − M n − m ) ( N n ) \frac{\binom{M}{m}\binom{N-M}{n-m}}{\binom{N}{n}} (nN)(mM)(nmNM)
      • 说明:不放回抽样
  • 连续型随机变量
    • 均匀分布
      • 概率密度: 1 b − a \frac{1}{b-a} ba1
      • 分布函数: x − a b − a \frac{x-a}{b-a} baxa
      • 数学期望: a + b 2 \frac{a+b}{2} 2a+b
      • 方差: ( b − a ) 2 12 \frac{(b-a)^2}{12} 12(ba)2
    • 指数分布
      • 概率密度: λ e − λ x \lambda e^{-\lambda x} λeλx
      • 分布函数: 1 − e − λ x 1-e^{-\lambda x} 1eλx
      • 数学期望: 1 λ \frac{1}{\lambda} λ1
      • 方差: 1 λ 2 \frac{1}{\lambda^2} λ21
    • 正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)
      • 概率密度: 1 σ 2 π e ( x − μ ) 2 2 σ 2 \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{(x-\mu)^2}{2\sigma^2}} σ2π 1e2σ2(xμ)2
      • 分布函数: ∫ − ∞ + ∞ 1 2 π σ e ( x − μ ) 2 2 σ 2 d x \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{(x-\mu)^2}{2\sigma^2}}dx +2π σ1e2σ2(xμ)2dx
      • 数学期望: μ \mu μ
      • 方差: σ 2 \sigma^2 σ2

随机变量的函数

设: Y = g ( x ) Y=g(x) Y=g(x),已知随机变量X得分布,则:随机变量Y的分布

  • 离散型随机变量
    • 通过X的分布律,和已知的y=g(x)的函数关系计算Y的分布律,从而得到Y的分布律。
    • 数学期望: ∑ g ( x i ) p i \sum g(x_i)p_i g(xi)pi
  • 连续型随机变量
    • 随机变量Y的密度函数: f Y ( y ) = f X ( g − 1 ( y ) ) ∣ [ g − 1 ( y ) ] ′ ∣ f_Y(y)=f_X(g^{-1}(y))|[g^{-1}(y)]^{'}| fY(y)=fX(g1(y))[g1(y)]
    • 数学期望: ∫ g ( x ) f ( x ) d x \int g(x)f(x)dx g(x)f(x)dx

多维随机变量

  • 联合分布
    • f ( x , y ) = f X ( x ) f Y ( y ) f(x,y)=f_X(x)f_Y(y) f(x,y)=fX(x)fY(y) (X,Y相互独立)
  • 边缘分布
  • 条件分布
  • 数学期望性质
    • E ( C ) = C E(C) = C E(C)=C
    • E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y)
    • E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y) (X,Y相互独立)
    • E ( C X ) = C E ( X ) E(CX)=CE(X) E(CX)=CE(X)
  • 方差性质
    • D ( C ) = 0 D(C)=0 D(C)=0
    • D ( C X ) = C 2 D ( X ) D(CX)=C^2D(X) D(CX)=C2D(X)
    • D ( X + Y ) = D ( X ) + D ( Y ) + 2 C o v ( X , Y ) D(X+Y)=D(X)+D(Y)+2Cov(X,Y) D(X+Y)=D(X)+D(Y)+2Cov(X,Y), 若X,Y相互独立,则有: D ( X + Y ) = D ( X ) + D ( Y ) D(X+Y)=D(X)+D(Y) D(X+Y)=D(X)+D(Y). 注: C o v ( X , Y ) = E [ ( X − X ‾ ) ( Y − Y ‾ ) ] Cov(X,Y)=E[(X-\overline{X})(Y-\overline{Y})] Cov(X,Y)=E[(XX)(YY)]
  • 协方差与相关系数
    • 协方差:Cov(X,Y)
    • 相关系数: ρ = C o v ( X , Y ) D ( X ) D ( Y ) \rho=\frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} ρ=D(X) D(Y) Cov(X,Y)
    • 性质:
      • Cov(X,X) = D(X)
      • Cov(X,Y) = Cov(Y,X)
      • Cov(aX, bY) = abCov(X,Y)
      • Cov(X+Y, Z) = Cov(X,Z) + Cov(Y,Z)
      • D ( X ) D ( Y ) ≥ C o v 2 ( X , Y ) D(X)D(Y) \ge Cov^2(X,Y) D(X)D(Y)Cov2(X,Y)
  • 两个随机变量函数的分布
    • X+Y
      • 离散型:类似一维情况,写出Z=X+Y的分布律。
        • :对于泊松,二项分布,满足加法叠加性质。
      • 连续型:卷积公式
        • f Z ( z ) = ∫ f ( z − y , y ) d y f_Z(z)=\int f(z-y,y)dy fZ(z)=f(zy,y)dy
        • 若X,Y相互独立 f Z ( z ) = ∫ f X ( z − y ) f Y ( y ) d y f_Z(z)=\int f_X(z-y)f_Y(y)dy fZ(z)=fX(zy)fY(y)dy
        • : 对于正态分布,满足加法叠加性质
    • Max(X,Y) / Min(X,Y)
      • M a x ( X , Y ) = F X ( x ) F Y ( y ) Max(X,Y)=F_X(x)F_Y(y) Max(X,Y)=FX(x)FY(y)
      • M i n ( X , Y ) = 1 − ( 1 − F X ( x ) ( ) 1 − F Y ( y ) ) Min(X,Y)=1-(1-F_X(x)()1-F_Y(y)) Min(X,Y)=1(1FX(x)()1FY(y))

大数定理

  • 切比雪夫不等式
    • P { X ≥ ϵ } ≤ E ( X ) ϵ P\{X \ge \epsilon\}\le\frac{E(X)}{\epsilon} P{Xϵ}ϵE(X)
    • P { ∣ X − μ ∣ ≤ ϵ } ≥ 1 − σ 2 ϵ 2 P\{|X-\mu|\le\epsilon\}\ge1-\frac{\sigma^2}{\epsilon^2} P{Xμϵ}1ϵ2σ2
  • 大数定理
    • lim ⁡ n − > + ∞ P { ∣ X − E ( X ) ∣ < ϵ } = 1 即: X − > P E ( X ) \lim_{n->+\infty}P\{|X-E(X)|\lt\epsilon\}=1即:X ->^PE(X) limn>+P{XE(X)<ϵ}=1即:X>PE(X)
    • lim ⁡ n − > + ∞ P { ∣ E ( X ) − μ ∣ < ϵ } = 1 即: E ( X ) − > P μ \lim_{n->+\infty}P\{|E(X)-\mu|\lt\epsilon\}=1即:E(X)->^P\mu limn>+P{E(X)μ<ϵ}=1即:E(X)>Pμ
    • 伯努利大数定理: lim ⁡ n − > + ∞ P { ∣ A n n − p ∣ < ϵ } = 1 \lim_{n->+\infty}P\{|\frac{A_n}{n}-p|\lt\epsilon\}=1 limn>+P{nAnp<ϵ}=1

中心极限定理

  • X i 相互独立情况 X_i相互独立情况 Xi相互独立情况
    • lim ⁡ n − > + ∞ P { ∑ ( X i − μ i ) ∑ σ 2 ≤ x } ∼ Φ ( x ) \lim_{n->+\infty}P\{\frac{\sum(X_i-\mu_i)}{\sqrt{\sum\sigma^2}}\le x\}\sim\Phi(x) limn>+P{σ2 (Xiμi)x}Φ(x)
  • 独立同分布情况
    • lim ⁡ n − > + ∞ P { ∑ X i − n μ σ n ≤ x } ∼ Φ ( x ) \lim_{n->+\infty}P\{\frac{\sum X_i-n\mu}{\sigma\sqrt{n}}\le x\}\sim\Phi(x) limn>+P{σn Xinμx}Φ(x)
  • 独立同分布,且 X i X_i Xi为0-1分布
    • lim ⁡ n − > + ∞ P { ∑ X i − n p n p ( 1 − p ) ≤ x } ∼ Φ ( x ) \lim_{n->+\infty}P\{\frac{\sum X_i-np}{\sqrt{np(1-p)}}\le x\}\sim\Phi(x) limn>+P{np(1p) Xinpx}Φ(x)

抽样分布

  • 统计量
    • 样本均值: X ‾ = 1 n ∑ X i \overline{X}=\frac{1}{n}\sum X_i X=n1Xi
    • 样本方差: S 2 = 1 n − 1 ∑ ( X i − X ‾ ) 2 S^2=\frac{1}{n-1}\sum(X_i-\overline{X})^2 S2=n11(XiX)2
    • k阶原点矩: A k = 1 n ∑ X i k A_k=\frac{1}{n}\sum X_i^k Ak=n1Xik
    • k阶中心矩: B k = 1 n ∑ ( X i − X ‾ ) k B_k=\frac{1}{n}\sum(X_i-\overline{X})^k Bk=n1(XiX)k
    • E ( X ‾ ) = μ ; D ( X ‾ ) = σ 2 n E(\overline{X})=\mu;D(\overline{X})=\frac{\sigma^2}{n} E(X)=μ;D(X)=nσ2
    • 伽马函数: γ ( n ) = ∫ 0 + ∞ e − x x n − 1 d x \gamma(n)=\int_{0}^{+\infty}e^{-x}x^{n-1}dx γ(n)=0+exxn1dx
  • 常用分布函数
    • 单正态抽样分布
      • 卡方分布: ϰ 2 ( n ) \varkappa^2(n) ϰ2(n)
        • 说明:标准正态分布的平方和
        • 数学期望:n
        • 方差:2n
        • ( n − 1 ) S 2 σ 2 ∼ ϰ 2 ( n − 1 ) \frac{(n-1)S^2}{\sigma^2}\sim\varkappa^2(n-1) σ2(n1)S2ϰ2(n1)
      • T分布:t(n)
        • 说明: N ( 0 , 1 ) ϰ 2 ( n ) n ∼ t ( n ) \frac{N(0,1)}{\sqrt{\frac{\varkappa^2(n)}{n}}}\sim t(n) nϰ2(n) N(0,1)t(n)
        • 数学期望:0
        • 方差: n n − 2 \frac{n}{n-2} n2n
        • X ‾ − μ S / n ∼ t ( n − 1 ) \frac{\overline{X}-\mu}{S/\sqrt{n}}\sim t(n-1) S/n Xμt(n1)
      • F分布:F(m,n)
        • 说明: ϰ 2 ( m ) / m ϰ 2 ( n ) / n ∼ F ( m , n ) \frac{\varkappa^2(m)/m}{\varkappa^2(n)/n}\sim F(m,n) ϰ2(n)/nϰ2(m)/mF(m,n)
        • 数学期望: n n − 2 \frac{n}{n-2} n2n
        • 方差: 2 n 2 ( m + n − 2 ) m ( n − 2 ) ( n − 4 ) \frac{2n^2(m+n-2)}{m(n-2)(n-4)} m(n2)(n4)2n2(m+n2)
        • 1 F ( m , n ) = F ( n , m ) \frac{1}{F(m,n)}=F(n,m) F(m,n)1=F(n,m)
        • [ t ( n ) ] 2 = F ( 1 , n ) [t(n)]^2=F(1,n) [t(n)]2=F(1,n)
    • 双正态抽样分布
      • 均值差相关分布
        • 标准正态分布:N(0,1)
          • N ( 0 , 1 ) ∼ ( X ‾ − Y ‾ ) − ( μ x − μ y ) σ x 2 n x + σ y 2 n y N(0,1) \sim\frac{(\overline{X}-\overline{Y})-(\mu_x-\mu_y)}{\sqrt{\frac{\sigma_x^2}{n_x}+\frac{\sigma_y^2}{n_y}}} N(0,1)nxσx2+nyσy2 (XY)(μxμy)
        • t分布: t ( n x + n y − 2 ) ; σ x 2 = σ y 2 = σ 2 t(n_x+n_y-2);\sigma_x^2=\sigma_y^2=\sigma^2 t(nx+ny2);σx2=σy2=σ2
          • t ( n x + n y − 2 ) ∼ ( X ‾ − Y ‾ ) − ( μ x − μ y ) S W 1 n x + 1 n y t(n_x+n_y-2)\sim \frac{(\overline{X}-\overline{Y})-(\mu_x-\mu_y)}{S_W\sqrt{\frac{1}{n_x}}+\frac{1}{n_y}} t(nx+ny2)SWnx1 +ny1(XY)(μxμy)
          • S W = n x − 1 n x + n y − 2 S X + n y − 1 n x + n y − 2 S Y S_W=\frac{n_x-1}{n_x+n_y-2}S_X+\frac{n_y-1}{n_x+n_y-2}S_Y SW=nx+ny2nx1SX+nx+ny2ny1SY
      • 方差比相关分布
        • F分布
          • S x 2 / S y 2 σ x 2 / σ y 2 ∼ F ( n x − 1 , n y − 1 ) \frac{S_x^2/S_y^2}{\sigma_x^2/\sigma_y^2}\sim F(n_x-1,n_y-1) σx2/σy2Sx2/Sy2F(nx1,ny1)

参数估计

  • 点估计
    • 矩估计法
    • 极大似然估计法
    • 评价标准
      • 无偏性
      • 有效性
      • 相合性

置信区间

  • 单正态总体分布情况
    • 均值估计
      • 方差已知情况
        • ( X ‾ − u α / 2 σ n , X ‾ + u α / 2 σ n ) (\overline{X}-u_{\alpha/2}\frac{\sigma}{\sqrt{n}},\overline{X}+u_{\alpha/2}\frac{\sigma}{\sqrt{n}}) (Xuα/2n σ,X+uα/2n σ)
      • 方差未知情况
        • ( X ‾ − t α / 2 S n , X ‾ + t α / 2 S n ) (\overline{X}-t_{\alpha/2}\frac{S}{\sqrt{n}},\overline{X}+t_{\alpha/2}\frac{S}{\sqrt{n}}) (Xtα/2n S,X+tα/2n S)
    • 方差估计
      • ( ( n − 1 ) S 2 ϰ α / 2 2 ( n − 1 ) , ( n − 1 ) S 2 ϰ 1 − α / 2 2 ( n − 1 ) ) (\frac{(n-1)S^2}{\varkappa_{\alpha/2}^2(n-1)},\frac{(n-1)S^2}{\varkappa_{1-\alpha/2}^2(n-1)}) (ϰα/22(n1)(n1)S2,ϰ1α/22(n1)(n1)S2)
  • 双正态总体分布情况
    • 均值差区间估计
      • 方差已知情况
        • ( X ‾ − Y ‾ − u α / 2 σ x 2 n x + σ y 2 n y , X ‾ − Y ‾ + u α / 2 σ x 2 n x + σ y 2 n y ) (\overline{X}-\overline{Y}-u_{\alpha/2}\sqrt{\frac{\sigma_x^2}{n_x}+\frac{\sigma_y^2}{n_y}},\overline{X}-\overline{Y}+u_{\alpha/2}\sqrt{\frac{\sigma_x^2}{n_x}+\frac{\sigma_y^2}{n_y}}) (XYuα/2nxσx2+nyσy2 ,XY+uα/2nxσx2+nyσy2 )
      • 方差未知情况(方差相等)
        • ( X ‾ − Y ‾ − t α / 2 S w 1 n x + 1 n y , X ‾ − Y ‾ + t α / 2 S w 1 n x + 1 n y ) (\overline{X}-\overline{Y}-t_{\alpha/2}S_w\sqrt{\frac{1}{n_x}+\frac{1}{n_y}},\overline{X}-\overline{Y}+t_{\alpha/2}S_w\sqrt{\frac{1}{n_x}+\frac{1}{n_y}}) (XYtα/2Swnx1+ny1 ,XY+tα/2Swnx1+ny1 )
    • 方差比区间估计
      • ( S x 2 S y 2 1 F α / 2 ( n x − 1 , n y − 1 ) , S x 2 S y 2 1 F 1 − α / 2 ( n x − 1 , n y − 1 ) ) (\frac{S_x^2}{S_y^2}\frac{1}{F_{\alpha/2}(n_x-1,n_y-1)},\frac{S_x^2}{S_y^2}\frac{1}{F_{1-\alpha/2}(n_x-1,n_y-1)}) (Sy2Sx2Fα/2(nx1,ny1)1,Sy2Sx2F1α/2(nx1,ny1)1)

假设检验

  • 一个正态总体分布情况
    • 均值检验
      • 已知方差情况
        • X ‾ − μ σ 2 / n ∼ U \frac{\overline{X}-\mu}{\sigma^2/\sqrt{n}}\sim U σ2/n XμU;(标准正态分布)
      • 未知方差情况
        • X ‾ − μ S 2 / n ∼ t ( n − 1 ) \frac{\overline{X}-\mu}{S^2/\sqrt{n}}\sim t(n-1) S2/n Xμt(n1)
    • 方差检验
      • ( n − 1 ) S 2 σ 2 ∼ ϰ 2 ( n − 1 ) \frac{(n-1)S^2}{\sigma^2}\sim\varkappa^2(n-1) σ2(n1)S2ϰ2(n1)
  • 两个正态总体分布情况
    • 均值差检验
      • 已知方差情况
        • X ‾ − Y ‾ − ( μ x − μ y ) σ x 2 n x + σ y 2 n y ∼ U \frac{\overline{X}-\overline{Y}-(\mu_x-\mu_y)}{\sqrt{\frac{\sigma_x^2}{n_x}+\frac{\sigma_y^2}{n_y}}}\sim U nxσx2+nyσy2 XY(μxμy)U
      • 未知方差情况
        • X ‾ − Y ‾ − ( μ x − μ y ) S w 1 n x + 1 n y ∼ t ( n x + n y − 2 ) \frac{\overline{X}-\overline{Y}-(\mu_x-\mu_y)}{S_w\sqrt{\frac{1}{n_x}+\frac{1}{n_y}}}\sim t(n_x+n_y-2) Swnx1+ny1 XY(μxμy)t(nx+ny2)
        • S w = n x − 1 n x + n y − 2 S x + n y − 1 n x + n y − 2 S y S_w=\frac{n_x-1}{n_x+n_y-2}S_x+\frac{n_y-1}{n_x+n_y-2}S_y Sw=nx+ny2nx1Sx+nx+ny2ny1Sy
    • 方差比检验
      • S x 2 S y 2 / σ x 2 σ y 2 ∼ F ( n x − 1 , n y − 1 ) \frac{S_x^2}{S_y^2}/\frac{\sigma_x^2}{\sigma_y^2}\sim F(n_x-1,n_y-1) Sy2Sx2/σy2σx2F(nx1,ny1)

多因素影响的方差分析

检验环境因素对随机变量的影响程度

  • 单因素方差分析
    • S T = S E + S A S_T=S_E+S_A ST=SE+SA(总误差平方和=误差平方和+水平效应误差平方和)
    • 检验因素是否对随机变量有影响: S A / ( s − 1 ) S E / ( n − s ) ∼ F ( s − 1 , n − s ) \frac{S_A/(s-1)}{S_E/(n-s)}\sim F(s-1,n-s) SE/(ns)SA/(s1)F(s1,ns)
    • 参数估计:
      • σ 2 ^ = S E n − s \hat{\sigma^2}=\frac{S_E}{n-s} σ2^=nsSE
      • μ ^ = X ‾ \hat{\mu}=\overline{X} μ^=X
    • 当环境因素判定为对随机变量有影响时(即, H 0 H_0 H0为假时), δ j = X ‾ j − X ‾ \delta_j=\overline{X}_j-\overline{X} δj=XjX的置信区间: ( X i ‾ − X j ‾ − t α / 2 S E ‾ ( 1 / n i + 1 / n j ) , X i ‾ − X j ‾ + t α / 2 S E ‾ ( 1 / n i + 1 / n j ) ) (\overline{X_i}-\overline{X_j}-t_{\alpha/2}\sqrt{\overline{S_E}(1/n_i+1/n_j)},\overline{X_i}-\overline{X_j}+t_{\alpha/2}\sqrt{\overline{S_E}(1/n_i+1/n_j)}) (XiXjtα/2SE(1/ni+1/nj) ,XiXj+tα/2SE(1/ni+1/nj) )
  • 多因素方差分析
    • S T = S E + S A + S B + S A X B S_T=S_E+S_A+S_B+S_{AXB} ST=SE+SA+SB+SAXB
    • 检验因素是否对随机变量有影响:
      • S A / ( r − 1 ) S E / r s ( t − 1 ) ∼ F A ( r − 1 , r s ( t − 1 ) ) \frac{S_A/(r-1)}{S_E/rs(t-1)}\sim F_A(r-1, rs(t-1)) SE/rs(t1)SA/(r1)FA(r1,rs(t1))
      • S B / ( s − 1 ) S E / r s ( t − 1 ) ∼ F B ( s − 1 , r s ( t − 1 ) ) \frac{S_B/(s-1)}{S_E/rs(t-1)}\sim F_B(s-1,rs(t-1)) SE/rs(t1)SB/(s1)FB(s1,rs(t1))
      • S A X B / ( r − 1 ) ( s − 1 ) S E / ( r s ( t − 1 ) ) ∼ F A X B ( ( r − 1 ) ( s − 1 ) , r s ( t − 1 ) ) \frac{S_{AXB}/(r-1)(s-1)}{S_E/(rs(t-1))}\sim F_{AXB}((r-1)(s-1),rs(t-1)) SE/(rs(t1))SAXB/(r1)(s1)FAXB((r1)(s1),rs(t1))
    • 参数估计
      • σ 2 ^ = S E r s t − 1 \hat{\sigma^2}=\frac{S_E}{rst-1} σ2^=rst1SE
      • μ ^ = X ‾ \hat{\mu}=\overline{X} μ^=X
  • 无重复试验多因素方差分析
    • S T = S E + S A + S B S_T=S_E+S_A+S_B ST=SE+SA+SB
    • 检验因素是否对随机变量有影响:
      • S A / ( r − 1 ) S E / ( r − 1 ) ( s − 1 ) ∼ F A ( r − 1 , ( r − 1 ) ( s − 1 ) ) \frac{S_A/(r-1)}{S_E/(r-1)(s-1)}\sim F_A(r-1,(r-1)(s-1)) SE/(r1)(s1)SA/(r1)FA(r1,(r1)(s1))
      • S B / ( s − 1 ) S E / ( r − 1 ) ( s − 1 ) ∼ F B ( s − 1 , ( r − 1 ) ( s − 1 ) ) \frac{S_B/(s-1)}{S_E/(r-1)(s-1)}\sim F_B(s-1,(r-1)(s-1)) SE/(r1)(s1)SB/(s1)FB(s1,(r1)(s1))
    • 参数估计
      • σ 2 ^ = S E r s − 1 \hat{\sigma^2}=\frac{S_E}{rs-1} σ2^=rs1SE
      • μ ^ = X ‾ \hat{\mu}=\overline{X} μ^=X

回归分析

一元线性回归模型

  • Y = β 0 + β 1 X + ϵ Y=\beta_0+\beta_1X+\epsilon Y=β0+β1X+ϵ; ϵ ∼ N ( 0 , σ 2 ) \epsilon \sim N(0,\sigma^2) ϵN(0,σ2)
  • Y ∼ N ( β 0 + β 1 X , σ 2 ) Y \sim N(\beta_0+\beta_1X,\sigma^2) YN(β0+β1X,σ2)
  • 最小二乘法估计线性函数参数- β 0 ^ , β 1 ^ \hat{\beta_0},\hat{\beta_1} β0^,β1^(无偏估计)
    • { β 0 ^ = Y ‾ − β 1 ^ X ‾ β 1 ^ = L x y L x x \begin{cases}\hat{\beta_0}=\overline{Y}-\hat{\beta_1}\overline{X} \\ \hat{\beta_1}=\frac{L_{xy}}{L_{xx}} \end{cases} {β0^=Yβ1^Xβ1^=LxxLxy
    • L x y = ∑ x i y i − n X ‾ Y ‾ L_{xy}=\sum x_iy_i-n\overline{X}\overline{Y} Lxy=xiyinXY
    • L x x = ∑ x i 2 − n X ‾ 2 L_{xx}=\sum x_i^2-n\overline{X}^2 Lxx=xi2nX2
  • 随机变量间是否存在线性关系的假设显著性检验
    • S T = S 回 + S 剩 S_T=S_回+S_剩 ST=S+S
      • S_回: 线性回归误差平方和。 ∑ ( y i ^ − y ‾ ) 2 \sum(\hat{y_i}-\overline{y})^2 (yi^y)2
      • S_剩: 剩余误差平方和。 ∑ ( y i − y i ^ ) 2 \sum(y_i-\hat{y_i})^2 (yiyi^)2
    • 参数估计
      • σ 2 ^ = S 剩 n − 2 \hat{\sigma^2}=\frac{S_剩}{n-2} σ2^=n2S
      • ( n − 2 ) σ 2 ^ σ 2 ∼ ϰ 2 ( n − 2 ) \frac{(n-2)\hat{\sigma^2}}{\sigma^2}\sim\varkappa^2(n-2) σ2(n2)σ2^ϰ2(n2)
    • F检验法
      • S 回 S 剩 / ( n − 2 ) ∼ F ( 1 , n − 2 ) \frac{S_回}{S_剩/(n-2)}\sim F(1,n-2) S/(n2)SF(1,n2)
      • S 回 σ 2 ∼ ϰ 2 ( 1 ) \frac{S_回}{\sigma^2}\sim\varkappa^2(1) σ2Sϰ2(1)
      • S 剩 σ 2 ∼ ϰ 2 ( n − 2 ) \frac{S_剩}{\sigma^2}\sim\varkappa^2(n-2) σ2Sϰ2(n2)
    • 预测值的置信水平区间
      • ( y i ± t α / 2 σ 1 + 1 n + ( x i − x ‾ ) 2 L x x ^ ^ ) (\hat{y_i\pm t_{\alpha/2}\hat{\sigma\sqrt{1+\frac{1}{n}+\frac{(x_i-\overline{x})^2}{L_{xx}}}}}) (yi±tα/2σ1+n1+Lxx(xix)2 ^^)
  • 10
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值