深度学习(三)Pandas: Series and DataFrame的简单数学运算

s2=Series([1,2,3],index=['A','B','C'])
s3=Series([4,5,6,7],index=['B','C','D','E'])

s2+s3

s2:
A    1
B    2
C    3
dtype: int64
s3:
B    4
C    5
D    6
E    7
dtype: int64
s2+s3
A    NaN
B    6.0
C    8.0
D    NaN
E    NaN
dtype: float64

DataFrame加法

df1 = dframe(np.arange(4).reshape(2,2),index=['A','B'],columns=['BJ','SH'])
df2 = dframe(np.arange(9).reshape(3,3),index=['A','B','C'],columns=['BJ','SH','GZ'])
df1:
 	BJ 	SH
A 	0 	1
B 	2 	3
df2:
 	BJ 	SH 	GZ
A 	0 	1 	2
B 	3 	4 	5
C 	6 	7 	8
df2+df3
 	BJ 	GZ 	SH
A 	0.0 	NaN 	2.0
B 	5.0 	NaN 	7.0
C 	NaN 	NaN 	NaN
df3 = dframe([[1,2,3],[4,5,np.nan],[7,8,9]],index=['AA','BB','CC'],columns=['a','b','c'])
df3:
 	a 	b 	c
AA 	1 	2 	3.0
BB 	4 	5 	NaN
CC 	7 	8 	9.0
df3.sum() #按行求和
a    12.0
b    15.0
c    12.0
dtype: float64
df3.sum(axis=1) #按列求和
AA     6.0
BB     9.0
CC    24.0
dtype: float64
df3.min()
a    1.0
b    2.0
c    3.0
dtype: float64
df3.max()
a    7.0
b    8.0
c    9.0
dtype: float64
df3.describe()
 	a 	b 	c
count 	3.0 	3.0 	2.000000
mean 	4.0 	5.0 	6.000000
std 	3.0 	3.0 	4.242641
min 	1.0 	2.0 	3.000000
25% 	2.5 	3.5 	4.500000
50% 	4.0 	5.0 	6.000000
75% 	5.5 	6.5 	7.500000
max 	7.0 	8.0 	9.000000

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值