@[网络流——最大流——Dinic算法的初步认识]
网络流——最大流——Dinic算法
关于网络流——最大流
!!!!!!!目前博客转移 https://www.cnblogs.com/everlasting-k/p/13777489.html !!!
简单说一说:有一个起点(源点),和一个终点(汇点),它们之间用很多直径大小不一的管子连在一起,为什么要用大小不一的管子,(假如这些都是水管),那么你要做的就是:算出从源点到汇点最大可以流入多少水。
显然,对于一条路上,它的最大流是这条路上直径最小的管子所能承受的水量(再多的话,那最小的水管就爆了)。 于是乎,直径最小的水管就被占满了——不能再有更多的水从这里通过,而直径比它大的管子还没被占满——所以他们还可以再让更多的水通过。
大概就这么个意思_如下图
最后,把所有到达汇点的水量加起来就行了。
直接上代码!!!
#include<bits/stdc++.h>
using namespace std;
const int INF=0xfffffff;
const int MAXN=5200199;
int s,t,n,m;
int tot=1;
int first[MAXN];
int dep[MAXN];
struct node{
int from,to,v;
int next;
};
node edge[MAXN*2];
void add(int u,int v,int w)
{
tot++;
edge[tot].from=u;
edge[tot].to=v;
edge[tot].v=w;
edge[tot].next=first[u];
first[u]=tot;
}
bool bfs() //建立分层图,每次dfs就是在最新的分层图的基础上进行的
{
memset(dep,-1,sizeof(dep));
dep[s]=0;
queue<int> q;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=first[u];i;i=edge[i].next)
{
int j=edge[i].to;
if(dep[j]==-1 && edge[i].v)
{
dep[j]=dep[u]+1;
q.push(j);
}
}
}
return dep[t]!=-1;
}
int dfs(int u,int flow) //以u记录当前编号,flow记录目前的最大流
{
if(u==t)
{
return flow;
}
int delta=flow; // !!重点,以delta记录 向下传递的最大流 与 实际接收的最大流 的差。 -->其实就是INF与最后答案的差
for(int i=first[u];i;i=edge[i].next)
{
int to=edge[i].to;
int w=edge[i].v;
if((dep[to]==dep[u]+1) && (w>0))
{
int sum=dfs(to,min(delta,w));
if(!sum)
{
dep[to]=INF; // 如果已经搜到这条边的剩余流量为0,那么就标记这个点不可再走了
}
edge[i].v-=sum;
edge[i^1].v+=sum; //正向和反向边处理
delta-=sum; //看图
if(!delta)
{
break; //如果没有剩余流量,就推出
}
}
}
return flow-delta; //
}
int Read()
{
int f=1,k=0;
char c=getchar();
while(c!='-' && (c<'0' || c>'9'))
{
c=getchar();
}
if(c=='-')
{
f=-1;
c=getchar();
}
while(c>='0' && c<='9')
{
k=(k<<3) + (k<<1) + c - 48;
c=getchar();
}
return f*k;
}
int main ()
{
freopen("#2634.in","r",stdin);
n=Read();
m=Read();
s=Read();
t=Read();
int u,v,w;
for(int i=1;i<=m;i++)
{
u=Read();
v=Read();
w=Read();
add(u,v,w);
add(v,u,0);
}
long long ans=0;
while(bfs()) ans+=dfs(s,INF);
printf("%lld\n",ans);
return 0;
}
对于delta的解释:如图
其实delta就是阴影部分,最后答案就是最上面一层(flow)减去阴影(delta)