为什么深度学习(Deep Learning)要使用GPU而不是CPU?

从上述两张图可以看到,GPU的ALU(运算单元)数量远多于CPU,但是GPU的Control要远远少于CPU,这使得GPU的单Core的自由度要远远低于CPU。

在设计目标上,CPU目标是是并行执行几十个线程,而GPU的目标是要并行执行几千个线程。因此,GPU将更多的晶体管用于数值计算,而不是缓存和流控(Flow Control)。

GPU每一行有多个ALU,却只有一个Control,这代表着多个Core同一时刻只能执行同样的指令,这种模式也称为 SIMT (Single Instruction Multiple Threads)。

从GPU的架构出发,我们会发现,因为Cache和Control的缺失,只有计算密集与数据并行的程序适合使用GPU。

  • 计算密集:数值计算的比例要远大于内存操作,因此内存访问的延时可以被计算掩盖,从而对Cache的需求相对CPU没那么大。
  • 数据并行: 大任务可以拆解为执行相同指令的小任务,因此对复杂流程控制的需求较低。

而深度学习恰好满足以上两点,更适合使用GPU来运算。

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
深度学习(FPGA)是深度学习算法在现场可编程门阵列(FPGA)上的实现。FPGA是一种可编程的硬件器件,可以在运行时重新配置和重新编程,从而实现算法的加速和优化。 使用FPGA来实现深度学习算法有几个优势。首先,FPGA具有并行处理的能力,可以同时执行多个计算任务,从而加快算法的速度。对于深度神经网络这种计算密集的任务来说,FPGA的并行处理能力可以大幅提高算法的运行效率。 其次,FPGA可以通过自定义硬件电路实现特定的计算功能,从而更好地满足深度学习算法的需求。与传统的通用计算设备相比,FPGA可以根据算法的特点设计专门的加速电路,有效地降低计算复杂度,提高算法的执行效率。 此外,FPGA还可以实现低功耗的深度学习计算。由于FPGA是通过可编程的硬件电路实现计算,相比传统的CPUGPU,FPGA在相同的计算任务下可以实现更低的功耗。 最后,FPGA的可编程特性使得它具备更高的灵活性和可扩展性。通过重新配置和重新编程,FPGA可以适应不同的深度学习算法和应用场景,实现定制化的计算任务。而且,FPGA可以与其他硬件设备集成,形成更复杂的计算系统。 综上所述,深度学习(FPGA)通过充分利用FPGA的并行处理能力、定制化的硬件电路设计、低功耗特性和灵活的可编程特性,可以提高深度学习算法的执行效率和功耗表现,为深度学习应用提供了一种高效的计算平台。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值