end's coding life

赤子之心

排序:
默认
按更新时间
按访问量

Mysql EXPLAIN详解

在工作中,我们用于捕捉性能问题最常用的就是打开慢查询,定位执行效率差的SQL,那么当我们定位到一个SQL以后还不算完事,我们还需要知道该SQL的执行计划,比如是全表扫描,还是索引扫描,这些都需要通过EXPLAIN去完成。EXPLAIN命令是查看优化器如何决定执行查询的主要方法。可以帮助我们深入了解...

2018-05-10 10:39:27

阅读数:17

评论数:0

Sentinel简介

Redis 的 Sentinel 系统用于管理多个 Redis 服务器(instance), 该系统执行以下三个任务:监控(Monitoring): Sentinel 会不断地检查你的主服务器和从服务器是否运作正常。提醒(Notification): 当被监控的某个 Redis 服务器出现问题时,...

2018-05-04 10:42:15

阅读数:22

评论数:0

Metrics使用简介

Metrics可以为你的代码的运行提供无与伦比的洞察力。作为一款监控指标的度量类库,它提供了很多模块可以为第三方库或者应用提供辅助统计信息, 比如Jetty, Logback, Log4j, Apache HttpClient, Ehcache, JDBI, Jersey, 它还可以将度量数据发送...

2018-05-02 10:00:51

阅读数:44

评论数:0

多平台Token系统架构设计

1   概述在存在账号体系的信息系统中,对身份的鉴定是非常重要的事情。随着移动互联网时代到来,客户端的类型越来越多, 逐渐出现了 一个服务器,N个客户端的格局 。不同的客户端产生了不同的用户使用场景,这些场景:有不同的环境安全威胁不同的会话生存周期不同的用户权限控制体系不同级别的接口调用方式综上所...

2018-04-16 15:56:36

阅读数:49

评论数:0

机器学习入门笔记(十一)----推荐系统

推荐系统是目前非常受欢迎的一个机器学习应用。下面将以电影推荐为例子简单介绍实现推荐系统的方法。前提假设我们运营一个电影网站,每个用户可以对电影评分:0-5分。 n(u) 代表用户数量 n(m) 代表电影数量 r(i,j) 代表用户j是否对电影i进行评分。1 已评。0 未评 y(i,j) 代...

2017-10-25 20:14:16

阅读数:271

评论数:0

机器学习入门笔记(十)----异常检测

介绍异常检测是机器学习的一个常用应用,主要针对非监督学习问题。 比如: * 飞机引擎制造商,采集生产的引擎的各个特征,通过异常检测算法来鉴定引擎有异常的概率。 * 信用卡欺诈账户检测 * 服务器集群,异常节点监测。高斯分布俗称:正态分布。 两个参数定义一个分布: 1. 均值μ 2. ...

2017-10-22 19:17:35

阅读数:197

评论数:0

机器学习入门笔记(九)----无监督学习

一、特征对于无标签的数据,算法自动的解析出数据中的结构。二、应用市场细分、用户关系网络分析、星系数据分析等等三、K均值算法步骤:(1)随机选取聚类中心 (2)计算与聚类中心的距离,进行分类 (3)计算每个分类的均值,作为新的聚类中心 (4)重复2 3步骤,直到分类结果稳定参数:(1)K分类个...

2017-10-17 11:40:22

阅读数:198

评论数:0

机器学习入门笔记(八)----支持向量机SVM

支持向量机SVM在复杂的非线性方程方面,比逻辑回归和神经网络表现的更为清晰、强大。 1. 通过逻辑回归了解SVM大致形式 设z = thetaT * x 假设函数:h(x) = 1 / (1 + e^(-z)) 分类为1  if h > 0.5 即 z >0 分类为0  if h ...

2017-09-25 10:14:03

阅读数:252

评论数:0

机器学习入门笔记(七)----机器学习实用方法

当我们实现一个机器学习模型后,发现效果并不是很理想,改进的方法有非常多,那么如果诊断当前模型,选择一条合适的道路去优化就成了一项必不可少的技能,否则‘拍脑门’的胡乱尝试,将会是一件非常浪费时间的事情,且最终也不一定能得到很好的效果。 1. 评估一个假设模型: 我们通过算法得到一个假设模型后,该模型...

2017-09-19 09:44:37

阅读数:242

评论数:0

机器学习入门笔记(六)----神经网络

1.模型表示: 模型分层:输入层、输出层、隐藏层。a(i) i表示第几层。thera(i) : 为第i层到第i+1层间的权重参数。 2. 向前传播:g(theta(i) * a(i))得到a(i+1)。最后一层即是h(x) 3. 解决分类问题: 类别 c = 2时,输出层仅一个节点,与...

2017-09-14 18:58:35

阅读数:166

评论数:0

机器学习入门笔记(五)----过拟合问题

上右边的图像,展示过拟合的情况。 过拟合问题,解决方法: 1.减少特征数量 2.正规化:保留所有特征,弱化特征参数。 正规化(regularization): 代价函数:  1.线性回归:  (1)梯度下降 对theta0不惩罚,其余theta引入正规化参数lama...

2017-09-07 18:33:48

阅读数:181

评论数:0

机器学习入门笔记(四)----逻辑回归

1.逻辑回归用于解决分类问题,简单举例 : 判定邮件是否为垃圾邮件;肿瘤是良性的还是恶性的. 2.假设函数:    3.预测结果h(x)值的含义为 : x的分类结果属于'1'的概率, 概率表示:

2017-08-31 23:13:21

阅读数:192

评论数:0

机器学习入门笔记(三)----Octave简单使用

1. 四则运算: 1 + 2 1 * 2 1 / 2 1 - 2 2. 变量赋值 a = 1a = 1;  % 不显示赋值结果 3. 注释: % 4. 相等 / 不等 :  1 == 2 %结果是0,表示为假1 ~= 2 %结果为1 5. 逻辑 / 位运算: 1 || 0   ...

2017-08-26 21:32:36

阅读数:779

评论数:0

机器学习入门笔记(二)----线性回归

1. 目标 : 找到使代价函数最小的函数h。 2. 代价函数:cost function,J。 平方误差代价函数:J(θ0,θ1)=12m∑i=1m(y^i−yi)2=12m∑i=1m(hθ(xi)−yi)2... 3. 梯度下降法:将代价函数J取值最小化。 定义:θj:=θj−α∂∂θj...

2017-08-24 22:54:17

阅读数:209

评论数:0

机器学习入门笔记(一)----初次见面

1. 尝试对机器学习进行定义: 给予机器自我学习的能力对于任务T完成质量的度量P,可以随着经验E提升。 2. 分类: 监督学习:已有数据前提下,给出一个算法。算法可以得出数据集中的结果,并尽量得出更多数据集外的正确结果。无监督学习:不确定结果是什么样子的自主学习。 3. 监...

2017-08-23 20:45:02

阅读数:181

评论数:0

Https必懂解析

1  序言 今天来聊一聊https 安全传输的原理。 在开始之前,我们来虚构两个人物, 一个是位于中国的张大胖(怎么又是你?!), 还有一个是位于米国的Bill (怎么还是你?!)。 这俩哥们隔着千山万水,通过网络联系上了, 两个人臭味相投,聊...

2017-07-26 10:56:07

阅读数:266

评论数:0

导数概念的理解

先简短地回答下我对“什么是导数”的认识:导数是用来找到“线性近似”的数学工具。 下面我来解释一下,为什么我是这样认为的。 在我学习微积分的过程中,我对导数的认知经历了三次变化: 导数是变化率、是切线的斜率、是速度、是加速度导数是用来找到“线性近似”的数学工具导数是线性变换 ...

2017-06-30 11:49:26

阅读数:270

评论数:0

Python标准库——collections模块的Counter类

1.collections模块 collections模块自Python 2.4版本开始被引入,包含了dict、set、list、tuple以外的一些特殊的容器类型,分别是: OrderedDict类:排序字典,是字典的子类。引入自2.7。namedtuple()函数:命名元组,是一个...

2017-06-29 17:16:03

阅读数:452

评论数:0

贝叶斯定理解析

贝叶斯定理是统计学中非常重要的一个定理,以贝叶斯定理为基础的统计学派在统计学世界里占据着重要的地位,和概率学派从事件的随机性出发不同,贝叶斯统计学更多地是从观察者的角度出发,事件的随机性不过是观察者掌握信息不完备所造成的,观察者所掌握的信息多寡将影响观察者对于事件的认知。 条件概率和全概率 在介绍...

2017-06-29 16:57:31

阅读数:379

评论数:0

NumPy使用教程

基础篇 NumPy的主要对象是同种元素的多维数组。这是一个所有的元素都是一种类型、通过一个正整数元组索引的元素表格(通常是元素是数字)。在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank)。 例如,在3D空间一个点的坐标 [1, 2, 3] 是一个秩...

2017-06-22 20:54:03

阅读数:328

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭