根据标记定位区域识别数字 - OpenCV 实践

92 篇文章 20 订阅 ¥59.90 ¥99.00
这篇博客介绍如何利用OpenCV库和Python,通过图像处理和机器学习技术,从图像中定位并识别数字。首先安装OpenCV,然后加载图像并进行灰度转换和二值化操作。接着,应用轮廓检测定位数字轮廓,筛选有效轮廓,提取数字区域。最后,使用k-NN模型进行数字识别,并可视化结果。
摘要由CSDN通过智能技术生成

在本文中,我们将使用 OpenCV 库和 Python 编程语言来实现一个数字识别的应用。我们的目标是利用图像处理和机器学习技术,从图像中定位和识别出数字。

首先,我们需要安装并导入 OpenCV 库。确保你已经正确安装了 Python 和 OpenCV,并且可以在代码中使用它们。

import cv2
import numpy as np

接下来,我们将加载一张包含数字的图像。你可以使用以下代码将图像加载到内存中:

image = cv2.imread("digit_image.jpg")

在加载图像之后,我们需要进行一些预处理步骤,以便更好地定位和识别数字。

首先࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值