使用 vllm 本地部署 Llama3-8b-Instruct

本文详细介绍了如何在本地环境中安装vllm、Ray、flash-attention,并通过示例步骤部署Llama3-8b-Instruct模型,包括设置虚拟环境、激活环境和配置GPU资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用 vllm 本地部署 Llama3-8b-Instruct

0. 引言

此文章主要介绍使用 vllm 运行 Llama3-8b。

1. 安装 vllm

创建虚拟环境,

conda create -n myvllm python=3.11 -y
conda activate myvllm

安装 Ray 和 Vllm,

pip install ray vllm

安装 flash-attention,

git clone https://github.com/Dao-AILab/flash-attention; cd flash-attention
pip install flash-attn --no-build-isolation

2. 本地部署 Llama3-8b-Instruct

eval "$(conda shell.bash hook)"
conda activate myvllm
CUDA_VISIBLE_DEVICES=0
python -m vllm.entrypoints.openai.api_server --trust-remote-code --served-model-name gpt-4 --model meta-llama/Meta-Llama-3-8B-Instruct --gpu-memory-utilization 0.9 --tensor-parallel-size 1 --port 8000

完结!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值