2 强化学习——Multi-armed Bandits

The most important feature distinguishing reinforcement learning from other types of learning is that it uses training information that evaluates the actions taken rather than instructs by giving correct actions.

强化学习区别与其他类型学习的最重要特征是:训练信息的作用是被用于“估计”采取的“动作”的优劣,而不是“指导”:直接给出正确的/最优的动作。

比如说走迷宫,从入口找到出口,假设只有一条路可以走通。那么,一般的学习算法给出的结果就是这条路,比如遗传算法或蚁群算法,他们指出的是在某一点你应该往哪个方向走(指导);而强化学习给出的是你在某一点,往各个方向走的优劣:比如在某一点你可以有四种选择“东、西、南、北”,那么强学习给出的是,若满分为100,往东走得60分,往西走40分,往北走80分,往南走30分。你可以在这一步选择“explicit(利用)”策略,即选择得分最高的那个动作,也可以在这一步选择“explore(探索)”,在四个方向中任意选择一个。

This is what creates the need for active exploration, for an explicit search for good behavior.

这就导致了在搜索好的行为的时候,需要主动探索。

Purely evaluative feedb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值