Matrix Theory(矩阵理论)

Matrix Theory(矩阵理论)


(未完待续 2021-09-28)

1. Intro. and Basics


1.1. Matrix Definition

  • An m × n m \times n m×n matrix is a rectangular array of numbers (or other mathematical objects) with m rows and n columns.
  • It is usually denoted as:
    A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ) A = \left( \begin{array}{c} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{array} \right) A=a11a21am1a12a22am2a1na2namn
  • Meanwhile, the matrix element of A in the i i ith row and j j jth column is denoted as a i j a_{ij} aij.

1.2. Basic Operations and Calculations

1.2.1. Addition
  • Can only be added for the same dimensional matrices:
    ( a b c d ) + ( e f g h ) = ( a + e b + f c + g d + h ) \left( \begin{array}{c} a & b \\ c & d \end{array}\right) + \left( \begin{array}{c} e & f \\ g & h \end{array}\right) = \left( \begin{array}{c} a+e & b+f \\ c+g & d+h \end{array}\right) (acbd)+(egfh)=(a+ec+gb+fd+h)
1.2.2. Scaling

k ( a b c d ) = ( k a k b k c k d ) k\left(\begin{array}{c} a & b \\ c & d \end{array}\right)= \left( \begin{array}{c} ka & kb \\ kc & kd \end{array}\right) k(acbd)=(kakckbkd)

1.2.3. Matrix Multiplication
  • Other than the scaling, two matrices can be multiplied only if the number of columns of the left matrix equals the number of rows of the right matrix.

  • For two 2 × 2 2\times2 2×2 matrices:
    ( a b c d ) ( e f g h ) = ( a e + b g a f + b h c e + d g c f + d h ) \left( \begin{array}{c} a & b \\ c & d \end{array}\right) \left( \begin{array}{c} e & f \\ g & h \end{array}\right) = \left( \begin{array}{c} ae+bg & af+bh \\ ce+dg & cf+dh \end{array}\right) (acbd)(egfh)=(ae+bgce+dgaf+bhcf+dh)

  • For more general cases: if A is an m × n m\times n m×n matrix while B is an n × p n \times p n×p matrix. Then C = AB is an m × p m \times p m×p matrix. Its i j ij ij element can be written as:
    c i j = ∑ k = 1 n a i k b k j . c_{ij} = \sum_{k=1}^n a_{ik}b_{kj}. cij=k=1naikbkj.

📣 Hint:
[ A ( B C ) ] i j = ∑ k = 1 n a i k [ B C ] k j = ∑ k = 1 n ∑ l = 1 p a i k b k l c l j = ∑ l = 1 p ∑ k = 1 n a i k b k l c l j = ∑ l = 1 p [ A B ] i l c l j = [ ( A B ) C ] i j [A(BC)]_{ij}=\sum_{k=1}^na_{ik}[BC]_{kj}= \sum_{k=1}^n \sum_{l=1}^p a_{ik}b_{kl}c_{lj}= \sum_{l=1}^p \sum_{k=1}^n a_{ik}b_{kl}c_{lj}=\sum_{l=1}^p[AB]_{il}c_{lj}=[(AB)C]_{ij} [A(BC)]ij=k=1naik[BC]kj=k=1nl=1paikbklclj=l=1pk=1naikbklclj=l=1p[AB]ilclj=[(AB)C]ij

1.2.4. Transpose Matrix
  • Denoted by A T A^T AT

  • It switches the rows and columns of A A A.

  • That is,
    if  A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ) ,  then  A T = ( a 11 a 21 ⋯ a m 1 a 12 a 22 ⋯ a m 2 ⋮ ⋮ ⋱ ⋮ a 1 n a 2 n ⋯ a m n ) \text{if } A=\left(\begin{array}{c} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array}\right), \text{ then } A^T=\left(\begin{array}{c} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{array}\right) if A=a11a21am1a12a22am2a1na2namn, then AT=a11a12a1na21a22a2nam1am2amn

  • Or to say: a i j T = a j i a_{ij}^T=a_{ji} aijT=aji.

  • Useful properties:

    • ( A T ) T = A (A^T)^T=A (AT)T=A
    • ( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT
    • ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT
1.2.5. Inner and Outer Products
  • Inner Product:
    • Also known as dot product or scalar product.
    • = Matrix product of a row vector times a column vector.
    • For example,
      u T v = ( u 1 u 2 u 3 ) ( v 1 v 2 v 3 ) = u 1 v 1 + u 2 v 2 + u 3 v 3 u^Tv = \left(\begin{array}{c} u_1 & u_2 & u_3 \end{array}\right)\left(\begin{array}{c} v_1 \\ v_2 \\ v_3 \end{array}\right)=u_1v_1+u_2v_2+u_3v_3 uTv=(u1u2u3)v1v2v3=u1v1+u2v2+u3v3

Note

  • Orthogonal: the inner product of two non-zero vectors is zero ⇒ \Rightarrow these two vectors are orthogonal.
  • Normalized: the norm of a vector = 1.
    ∣ ∣ u ∣ ∣ = ( u u T ) 1 2 = ( u 1 2 + u 2 2 + u 2 2 ) 1 2 ||u||=(uu^T)^\frac{1}{2}=(u_1^2+u_2^2+u_2^2)^\frac{1}{2} u=(uuT)21=(u12+u22+u22)21
  • Orthonormal: orthogonal + normalized.
  • Outer Product:
    • = Matrix product of a column vector times a row vector.
    • For example,
      u T v = ( u 1 u 2 u 3 ) ( v 1 v 2 v 3 ) = ( u 1 v 1 u 1 v 2 u 1 v 3 u 2 v 1 u 2 v 2 u 2 v 3 u 3 v 1 u 3 v 2 u 3 v 3 ) u^Tv = \left(\begin{array}{c} u_1 \\ u_2 \\ u_3 \end{array}\right)\left(\begin{array}{c} v_1 & v_2 & v_3 \end{array}\right)=\left(\begin{array}{c} u_1v_1 & u_1v_2 & u_1v_3 \\ u_2v_1 & u_2v_2 & u_2v_3 \\ u_3v_1 & u_3v_2 & u_3v_3 \end{array}\right) uTv=u1u2u3(v1v2v3)=u1v1u2v1u3v1u1v2u2v2u3v2u1v3u2v3u3v3

📣 Hint!!!

  • If A = ( a d b e c f ) A=\left(\begin{array}{c} a & d \\ b & e \\ c & f \end{array}\right) A=abcdef, then A T A A^TA ATA is symmetric.
  • T r ( A T A ) Tr(A^TA) Tr(ATA) is the sum of the squares of all the elements of A A A.
1.2.6. Inverse Matrix
  • Square matrices may have inverses. When a matrix A has an inverse, we say it is invertible.
  • Denoted by A − 1 A^{−1} A1.
  • Satisfies: A A − 1 = A − 1 A = I AA^{-1}=A^{-1}A=I AA1=A1A=I
  • Properties:
    • ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
    • If A is invertible ⇒ \Rightarrow A T A^T AT is invertible: ( A T ) − 1 = ( A − 1 ) T (A^T)^{-1}=(A^{-1})^{T} (AT)1=(A1)T

📣 Hint: if a matrix is invertible, then its inverse is unique.
Proof.   Assume there exists  A B = I  and  A C = I  and  B ≠ C However,  B = B I = B ( A C ) = I C = C . \textbf{Proof. } \text{Assume there exists }AB=I \text{ and } AC = I \text{ and }B\neq C \\\text{However, }B=BI=B(AC)=IC=C. Proof. Assume there exists AB=I and AC=I and B=CHowever, B=BI=B(AC)=IC=C.

1.3. Special Matrices

1.3.1. Zero Matrix
  • Denoted by 0 0 0
  • Can be any size and is a matrix consisting of all zero elements.
  • Multiplication by a zero matrix results in a zero matrix.
  • For example, a 2 × 2 2 \times 2 2×2 zero matrix:
    0 = ( 0 0 0 0 ) 0 = \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array}\right) 0=(0000)
1.3.2. Identity Matrix
  • Denoted by I I I
  • A I = I A = A AI=IA=A AI=IA=A, A A A and I I I are the same sized square matrices.
  • For example, a 2 × 2 2 \times 2 2×2 identity matrix:
    I = ( 1 0 0 1 ) I = \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array}\right) I=(1001)
1.3.3. Diagonal Matrix
  • Nonzero elements only on the diagonal.
  • For example, a 2 × 2 2 \times 2 2×2 diagonal matrix:
    D = ( d 1 0 0 d 2 ) D = \left(\begin{array}{c} d_1 & 0 \\ 0 & d_2 \end{array}\right) D=(d100d2)
1.3.4. Banded (Band) Matrix
  • Nonzero elements only on diagonal bands.
  • For example, a 3 × 3 3 \times 3 3×3 diagonal matrix:
    B = ( d 1 a 1 0 b 1 d 2 a 2 0 b 2 d 3 ) B = \left(\begin{array}{c} d_1 & a_1 & 0 \\ b_1 & d_2 & a_2 \\ 0 & b_2 & d_3 \end{array}\right) B=d1b10a1d2b20a2d3
1.3.5. Triangular Matrix
  • Upper Triangular Matrix:
    U = ( a b c 0 d e 0 0 f ) U = \left(\begin{array}{c} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{array}\right) U=a00bd0cef
  • Lower Triangular Matrix:
    L = ( a 0 0 b c 0 d e f ) L = \left(\begin{array}{c} a & 0 & 0 \\ b & c & 0 \\ d & e & f \end{array}\right) L=abd0ce00f
1.3.6. Symmetric Matrices
  • A T = A A^T=A AT=A
  • For example,
    ( a b c b d e c e f ) \left(\begin{array}{c} a & b & c \\ b & d & e \\ c & e & f \end{array}\right) abcbdecef
1.3.7. Skew Symmetric Matrices
  • A T = − A A^T=-A AT=A
  • For example,
    ( 0 b c − b 0 e − c − e 0 ) \left(\begin{array}{c} 0 & b & c \\ -b & 0 & e \\ -c & -e & 0 \end{array}\right) 0bcb0ece0
  • Notice that the diagonal elements of a skew-symmetric matrix must be zero.

📣 Hint!!!

  • Any square matrix A can be written as the sum of a symmetric and a skew-symmetric matrix.
    Proof.   A = 1 2 ( A + A T ) + 1 2 ( A − A T ) \textbf{Proof. }A = \frac{1}{2}(A+A^T)+\frac{1}{2}(A-A^T) Proof. A=21(A+AT)+21(AAT)
  • A T A A^TA ATA is symmetric.
1.3.8. Orthogonal Matrices
  • Definition:
    • Q − 1 = Q T Q^{-1}=Q^T Q1=QT. Equivalently, Q Q T = Q T Q = I QQ^T=Q^TQ=I QQT=QTQ=I.
    • The columns of Q form an orthonormal set of vectors. The same argument can also be made for the rows of Q.
    • An orthogonal matrix is a matrix that preserves lengths:
      ∣ ∣ Q x ∣ ∣ 2 = ( Q x ) T ( Q x ) = x T Q T Q x = x T I x = x T x = ∣ ∣ x ∣ ∣ 2 ||Qx||^2=(Qx)^T(Qx)=x^TQ^TQx=x^TIx=x^Tx=||x||^2 Qx2=(Qx)T(Qx)=xTQTQx=xTIx=xTx=x2
  • Examples of Orthogonal Matrices
    • Rotation Matrices
      A matrix that rotates a vector in space doesn’t change the vector’s length and so should be an orthogonal matrix.

      ( x ′ y ′ z ′ ) = ( c o s θ − s i n θ 0 s i n θ c o s θ 0 0 0 1 ) ( x y z ) , \left(\begin{array}{c}x' \\ y' \\ z'\end{array}\right)= \left(\begin{array}{c}cos\theta & -sin\theta & 0 \\ sin\theta &cos\theta & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{c}x \\ y \\ z\end{array}\right), xyz=cosθsinθ0sinθcosθ0001xyz,
      it rotates a three-dimensional vector an angle q counterclockwise around the z-axis.

    • Permutation Matxrices
      When multiplying on the left, permutes the rows of a matrix, and when multiplying on the right, permutes the columns.

      ( 0 0 1 1 0 0 0 1 0 ) ( a b c d e f g h i ) = ( g h i a b c d e f ) , \left(\begin{array}{c}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right) \left(\begin{array}{c}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)=\left(\begin{array}{c}g & h & i \\ a & b & c \\ d & e & f\end{array}\right), 010001100adgbehcfi=gadhbeicf,
      it is the row permutaion {3, 1, 2}.

      • A good way to understand and remenber this: P A = ( P I ) A PA=(PI)A PA=(PI)A

📣 Hint!!!

  • The product of two orthogonal matrices is orthogonal.
  • Identity matrix is orthogonal.

参考资料:
[1] Coursera: Matrix Algebra for Engineers

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值