python
文章平均质量分 53
基斯卡人
这个作者很懒,什么都没留下…
展开
-
TensorFlow 快速入门
TensorFlow 不断更新迭代,很多操作都被摒弃与更新,本场 Chat 环境如下:Windows 10、Python 3.6、TensorFlow 1.4。内容提要:一、初识 TensorFlow(简述部分)TensorFlow 是什么?TensorFlow 安装TensorFlow 基本概念与原理二、数据结构(tensor)(重点部分)Rank(阶)Shape(形状)Data Type(数据类型)三、生成数据十二法(重点部分)四、实战 TensorFlow(附源码)梯度下降法求原创 2020-08-19 20:31:44 · 322 阅读 · 0 评论 -
怎么搭建一个行业级人脸识别服务系统
现在的人脸识别技术已经很成熟,各种商业应用遍地开花。很多人也多多少少了解一些人脸识别的相关技术,比如卷积神经网络、人脸检测、人脸搜索等等,也会自己跑一下人脸识别模型。 But, so whta ?如果要你部署一个行业级人脸识别服务系统呢?每天处理上千万的视频图片,如何合理利用 GPU 资源,如何根据实际应用场景调整模型参数,性能,达到行业应用水准呢?是的,实际应用往往跟纯理论不一样!!需要我们见招拆招。本文将以实际应用为背景,讲解如何搭建一个行业级人脸识别服务系统,涉及以下内容:应用场景介绍人脸原创 2020-08-19 20:10:24 · 471 阅读 · 0 评论 -
人脸识别入门实战
本场 Chat 结合 PyQt5、OpenCV 以及 face_recognition 做一个人脸识别的项目,实现功能包括图片的识别,以及读取 USB 摄像头进行识别。通过本场 Chat 你能够学到如下内容:1.PyQt5 设计过程;2.Matplotlib 如何嵌入到 PyQt5 中;3.OpenCV 对图像的操作;4.face_recognition 环境的搭建;5.使用 face_recognition 进行精确人脸识别(据说识别率高达 99.3%);整个项目的完整设计过程。微信扫码即原创 2020-08-19 15:42:49 · 482 阅读 · 0 评论 -
机器学习必备的数学知识,一次学会
面对机器学习,初学者的阻塞点往往不在于机器学习本身,而是数学。机器学习是计算机技术,但它的底层是数学。通常,在机器学习相关的教材中,通篇都是复杂的数学公式。初学者如果数学基础不牢固,面对满篇的数学公式时,就会逐步失去学习信心、减少学习动力,而达不到预期的学习效果,最终只能沦落个“半吊子”的水平。有鉴于此,本 Chat 将会拆解机器学习主流模型,找到主流模型背后依赖的数学知识点。再讲这些数学相关的知识点,进行统一整合归并。因此,这篇 Chat 的背景是机器学习,而讲述的内容是数学知识。我会用尽可能简单的方式原创 2020-08-19 15:37:22 · 253 阅读 · 0 评论 -
详细解读爬虫处理滑动验证的技术细节和思想以案例说明
这篇文章将详解爬虫处理登陆过程中出现的滑动验证的细节,不管你是小白还是大神都老少皆宜;和人工智能过招,你将学会下面核心技术:1.如何真实模拟人为轨迹2.如何准确快速识别滑块距离3.如何防止被识别为爬虫4.滑动验证变种的处理5.下一步滑动验证如何升级学完上面后可在某京某宝上自行验证。通过本篇教程,你将学会处理滑动验证的核心思想并用之与人工智能对抗;学了后再面试中你讲成为面试官眼中的 Python 爬虫大神,在实际工作中你将轻松解决爬虫登陆问题。该技术源于解决某京登陆的问题,为避免侵权,案例以公开体原创 2020-08-19 15:33:29 · 311 阅读 · 0 评论 -
PyQt5完美结合OpenCV
本人做了一个PyQt5完美结合OpenCV的gitChat 使用微信扫描关注,前十名限时免费哦原创 2017-12-28 18:19:16 · 4059 阅读 · 0 评论 -
OpenCV中的轮廓(2)
即上次说了OpenCV中的轮廓的理论知识,接下来做个小工具去实现这些功能,包含之前的轮廓检测以及图像金字塔。由于时间有限拉普拉斯金字塔没有实现,还有轮廓的性质没有获取显示出来,这里讲给出源码,有兴趣的可以自行添加。 本人运行的环境是:python3.6 PyQt5.9 Matplotlib openCV3 等 效果如图所示: mian.py # -*- coding:utf-8原创 2017-11-28 10:53:13 · 600 阅读 · 0 评论 -
PyQt5+OpenCV+Matplotlib 基础操作教程代码
由于以前写的基础知识没有配写代码:http://download.csdn.net/download/eric_lmy/10121771 现在讲代码配上:显示效果如下:http://blog.csdn.net/Eric_lmy/article/details/78553354 推荐一个GitChat(赶紧领取,前十名免费,速速领取) 使用环境是:python3.6 opencv matpl原创 2017-12-08 13:51:05 · 845 阅读 · 0 评论 -
openCV中的图像变换
也就是傅里叶变换。傅里叶变换经常用来分析不同滤波器的频率特性。可以使用2D离散傅里叶变换(DFT)分析图像的频域特性。实现DFT的一个快速算法称为快速傅里叶变换(FFT)。对于一个正弦信号:x(t) = Asin(2πft),它的频率为f,如果把这个信号转到它的频域表示,我们会在频率f中看到一个峰值。如果我们的信号是由采样产生的离散信号组成的,我们会得到类似的频谱图,只不过前面是连续的,现在是离散的原创 2017-12-25 15:31:27 · 517 阅读 · 0 评论 -
pyinstaller+scipy
最近由于工作需要将PyQt5写的程序打包成exe文件,开始使用的cx_freeze的工具进行打包,由于打包的结果太大,所有换成了pyinstaller的工具使用,这个工具比较简单,开始写了一个demo打包很顺利,但是用到项目中却老是出问题,这是因为项目中用来scipy这个库,pyinstaller没有支持这个库,于是就是用选项–hidden-import=scipy 将其打包,又发现1.0.0的版本原创 2017-12-07 14:34:18 · 2124 阅读 · 0 评论 -
python for OpenCV图像处理之模板匹配以及分水岭算法
首先看些效果如下: 具体代码如下:if __name__ == '__main__': from muban import Ui_Formelse: from muban.muban import Ui_Formfrom PyQt5.QtWidgets import QWidget, QFileDialogfrom PyQt5.QtCor原创 2018-01-17 15:34:16 · 2313 阅读 · 1 评论 -
OpenCV结合PyQt5开发之旅
最近在gitChat上做了一个简短的教程,快速入门PyQt5和结合OpenCV的开发 地址:(http://gitbook.cn/gitchat/activity/5a433b3ffee1cd074a5cef06) 详细讲解了: PyQt5 的安装过程以及 pyqt5_tools 的安装过程 PyQt5 的快速入门讲解 OpenCV 的安装过程 PyQt5 如何结合 OpenCV 进行图原创 2018-02-07 16:52:28 · 1548 阅读 · 0 评论 -
Django2.0的学习分享1
最近研究了一下Django这个WEB框架,于是就做了一个简易的博客。具体过程如下: 算了,不写了,再把blog完善完善再写吧原创 2018-08-30 14:15:41 · 275 阅读 · 0 评论 -
python版gRPC快速入门一
最近花钱买了一些课程讲述了关于RPC的一些知识,觉得还不错,就在这里做一个总结,要是有什么不正确的地方还望指出,谢谢。原创 2018-09-19 15:10:14 · 3736 阅读 · 1 评论 -
基于gRPC框架做一个身份证号码的识别
做着纯属训练自己的技能,首先说下具体实现功能就是,从客户端传送一张身份证的正面照片给服务器,然后返回身份证的号码回来。部分代码在上一篇文章稍作修改,话不多说看代码:先看下server做了哪些修改:# -*- coding:utf-8 -*-import imagerecognition_pb2import imagerecognition_pb2_grpcimport timeimpo...原创 2018-09-25 17:19:39 · 920 阅读 · 0 评论 -
matplotlib中求两条曲线的交点
最近在工作中算法中遇到求两条曲线的交点的问题,开始在网上找了良久没找到什么可用的办法,后来自己就在再就在纸上画,发现一个简单的算法可以求出这些交点来。看下图就知道了,就是按照几何来计算比例:具体代码如下:import numpy as npimport matplotlib.pyplot as pltx1 = np.array([712,653,625,605,617,635,677...原创 2019-02-18 15:31:23 · 11862 阅读 · 5 评论 -
做一个人脸识别系统的应用
最近做了一个关于人脸识别的项目,于是整理出来一个入门的教程在 GitChat 上,喜欢的可以阅读以下;https://gitbook.cn/gitchat/activity/5bd6c569f47b2f4f1a7e9c11当然喜欢用 Python 的同学也可以支持以下我的新教程哦。网址如下:(也可以微信关注GitChat公众号,搜索教程题目即可)https://gitbook.cn/git...原创 2019-03-20 10:19:26 · 759 阅读 · 0 评论 -
Cython使用技巧
背景Python作为最方便的编程语言和丰富的配置而被大家推崇。 但是当我们的模型较复杂,运算量较大的时候,python的短板就会出现,执行速度并不那么理想,加上GIL的限制,让Python开发人员大为担忧,如何摆脱Python的这个短板而又不摒弃使用Python的快感呢?答案就是使用Cython。使用Cython,你可以避开Python的许多原生限制,或者完全超越Python,而无需放弃Pyth...原创 2019-04-09 18:08:41 · 1241 阅读 · 0 评论 -
OpenCV中的轮廓
a) 初始轮廓1.什么是轮廓 轮廓可以简单认为成将连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。 为了更准确,要使用二值化图像。在寻找轮廓之前,要进行阈值化处理或者Canny边界检测。 查找轮廓的函数会修改原始图像(若不想可使用img.copy()函数)。在OpenCV中,查找轮廓就像在黑色背景中找白色物体。So要找的物体应该是白色,而背景应该是黑色。 查找原创 2017-11-24 17:03:31 · 2207 阅读 · 0 评论 -
Python学习(1)-解释器
调用解释器 通常 Python 的解释器被安装在可用的目标机器 /usr/local/bin/pythonx.x 目录下;把 /usr/local/bin 目录放进你的 Unix Shell 的搜索路径里,通过输入命令来运行它。 输入:pythonx.x xx:代表python的版本号 在 Windows 机器上,Python 通常安装在 C:\Pythonxx,但当我们运行安装程序的时候可翻译 2016-07-07 12:09:26 · 481 阅读 · 0 评论 -
python学习(2)- Python 简介
Python 中的注释以#字符起始,直至实际的行尾。注释可以从行首开始,也可以在空白或代码之后,但是不出现在字符串中。文本字符串中的#字符仅仅表示#。 将 Python 当做计算器使用 我们来尝试一些简单的 Python 命令。启动解释器然后等待主提示符>>>出现。数字 解释器的表示就像一个简单的计算器:可以向其录入一些表达式,它会给出返回值。表达式语法很直白:运算符+,-,*和/与其它语言一翻译 2016-07-08 12:56:50 · 359 阅读 · 0 评论 -
python-模块
模块是程序 这个标题,一语道破了模块的本质,它就是一个扩展名为 .py 的 Python 程序。我们能够在应该使用它的时候将它引用过来,节省精力,不需要重写雷同的代码。 但是,如果我自己写一个 .py 文件,是不是就能作为模块 import 过来呢?还不那么简单。必须得让 Python 解释器能够找到你写的模块。 比如:在某个目录中,我写了这样一个文件:#!/usr/bin/env Pytho翻译 2016-09-09 10:15:26 · 299 阅读 · 0 评论 -
个人网站搭建(3)
连接数据库 首先安装mysql数据库。ubuntu可以使用命令:sudo apt-get install mysql-server安装。安装后运行:service mysqld start。 安装 Python-MySQLdb 命令: #sudo apt-get install build-essential Python-dev libmysqlclient-dev sudo apt-g原创 2016-09-09 13:34:11 · 468 阅读 · 0 评论 -
个人网站搭建(1)
最近一直想这搭建一个个人网站,在网上参考了好多资料,在网上找到了一个网站的基本结构图: MVC 模式是一个非常好的软件架构模式,在网站开发中,也常常要求遵守这个模式。 MVC 模式(Model-View-Controller)是软件工程中的一种软件架构模式,把软件系统分为三个基本部分:模型(Model)、视图(View)和控制器(Controller) 这里前端技术使用了js,css,ht原创 2016-09-08 13:52:20 · 480 阅读 · 0 评论 -
个人网站搭建(2)
首先,搭建一个基本框架,这样在后期的维护中比较方便。 也就是建立一个目录,在这个目录建立一些子目录和文件。这样做的目的就是把功能相似的代码放在一起便于日后管理和维护。废话不说马上开始。 建立一个pyweb的目录,在其下面建立handlers、methods、statics、templates目录和application.py、server.py、url.py三个python文件。 handle原创 2016-09-08 14:21:53 · 445 阅读 · 0 评论 -
python3.4+opencv的安装及问题
今天整理一下关于python安装第三方库的问题: 测试环境:win7-64位,python3.4.1(32位的) 问题1:python的位数和PC的位数不同如何选择第三方库? 因为电脑的64位是兼容32位程序的,所以选择第三方库的时候要选择32位的和python保持一致,例如本次测试安装的opencv就是选择的opencv_python-3.1.0-cp34-cp34m-win32.whl原创 2017-02-17 10:00:35 · 4247 阅读 · 0 评论 -
关于python安装第三方库的问题
有个网站很有用: http://www.lfd.uci.edu/~gohlke/pythonlibs/ 上面有很多.whl文件,对应各个python版本和位数,缺少上第三方库基本都能在此网站上找到,直接可以下载下来.whl文件使用pip安装即可或者解压后复制到python的安装目录下的\Lib\site-packages\目录下即可。 当你运行一些第三方库提示缺少module的时候也可用此方法原创 2017-02-17 15:58:01 · 844 阅读 · 0 评论 -
关于python3.4和PyQt4以及pyserial的串口小工具
1、首先安装python3.4的工具,下载python-3.4.1.msi文件,点击安装即可 2、下载PyQt4-4.11-gpl-Py3.4-Qt5.3.0-x32.exe文件点击安装 3、下载pyserial-py3k-2.5.win32.exe文件点击安装 代码如下:# -*- coding: utf-8 -*import sysimport serialimport serial原创 2017-02-15 16:41:18 · 2833 阅读 · 0 评论 -
关于把python程序打包成exe文件的操作
由于使用的是python3.4版本的py,选择cx_Freeze-4.3.3.win32-py3.4.msi作为打包工具,首先下载cx_Freeze文件(https://sourceforge.net/projects/cx-freeze/files/) 然后双击安装即可, 安装成功即显示下图: 由于这个版本存在bug,所以进行升级使用,下载cx_Freeze-5.0.1-cp34-cp34m原创 2017-02-15 20:20:10 · 658 阅读 · 0 评论 -
一个关于cx_Freeze打包的问题
IED调试的py3程序运行一切正常 打包运行后,提示在freeze_support中sys.stdout.flush处异常 原因:使用的PyQT作为界面,没有控制台 解决办法:重定向stdout和stderr,添加:sys.stdout = io.StringIO()和 sys.stderr = io.StringIO()原创 2017-03-30 09:47:42 · 1078 阅读 · 0 评论 -
vs2010编写dll库供python使用
刚接触这个问题的时候在网上也是搜罗了一大堆,大多数做下来没有成功,原因未知,很可能是我的功底不够吧,这里记录一下我成功的demo,希望能版主其他人。首先就是使用vs2010创建一个dll库(空项目)的工程, 添加源文件(如:hello.cpp)#include <stdio.h>#include <string.h>#include <stdlib.h>#define EXPORT_PKG_D原创 2017-04-11 13:33:42 · 2306 阅读 · 0 评论 -
OpenCV图像处理(2)-空间变换,几何变换,阈值处理
继上次说了图像画几何图形和文字,以及视频文件的处理显示,这次要说的事图像的颜色空间变换、几何变换(平移,缩放,旋转,仿射,视角等),阈值处理等,同样是结合PyQt5,opencv,matplotlib等技术。 1、 首先做了个颜色空间转换的小工具(BGR–>HSV的) 设置好阈值的上下限即可点击物体跟踪,会显示一个视频窗口如图。 不知道如何设置HSV值的可以用上面的小工具进行换算 2、原创 2017-11-21 11:39:13 · 590 阅读 · 0 评论 -
PyQt5+OpenCV+Matplotlib综合训练
最近在学习OpenCV相关的技术,综合下来写个OpenCV简单操作的项目: 可以显示视频,摄像头等 如图: 显示图像,并使用OpenCV画各种图像和文字: 还可以设置单个像素点的值,以及获取图像的各种属性实现了简单的颜色调节板,右上角有需要相关教程的以及源码的请移步: http://download.csdn.net/download/eric_lmy/10118547和 htt原创 2017-11-16 17:13:24 · 1257 阅读 · 0 评论 -
OpenCV-图像模糊,梯度、形态学变换
图像模糊实现了平均模糊、高斯模糊、中值模糊,双边模糊: 以及形态学变换原创 2017-11-22 16:21:44 · 487 阅读 · 0 评论 -
OpenCV-边缘检测和图像金字塔
1、 Canny边缘检测噪声去除 由于边缘检测很容易受到噪声影响,所以第一步使用5x5的高斯滤波器去除噪音。 计算图像梯度 对平滑后的图像使用Sobel算子计算水平方向和竖直方向的一阶导数(图像梯度)(Gx和Gy)。根据得到的两幅梯度图(Gx和Gy)找到边界的梯度和方向。公式如下: 梯度 梯度的方向一般总是与边界垂直。梯度方向被归为四类:垂直,水平,和两个对角线。 非极大值抑制原创 2017-11-23 19:23:01 · 708 阅读 · 0 评论 -
python学习(3)- 深入流程控制
if 語句 也许最有名的语句类型是 if 语句。例如 x = int(input(“Please enter an integer: “)) Please enter an integer: 42 if x < 0: … x = 0 … print(‘Negative changed to zero’) … elif x == 0: … print(‘Ze翻译 2016-07-11 12:52:10 · 1568 阅读 · 0 评论