一、 题目
1. 题目描述
有一个整数数组 nums
,和一个查询数组 requests
,其中 requests[i] = [starti, endi]
。第 i
个查询求 nums[starti] + nums[starti + 1] + ... + nums[endi - 1] + nums[endi]
的结果 ,starti
和 endi
数组索引都是 从 0 开始 的。
你可以任意排列 nums
中的数字,请你返回所有查询结果之和的最大值。
由于答案可能会很大,请你将它对 109 + 7
取余 后返回。
示例 1:
输入:nums = [1,2,3,4,5], requests = [[1,3],[0,1]] 输出:19 解释:一个可行的 nums 排列为 [2,1,3,4,5],并有如下结果: requests[0] -> nums[1] + nums[2] + nums[3] = 1 + 3 + 4 = 8 requests[1] -> nums[0] + nums[1] = 2 + 1 = 3 总和为:8 + 3 = 11。 一个总和更大的排列为 [3,5,4,2,1],并有如下结果: requests[0] -> nums[1] + nums[2] + nums[3] = 5 + 4 + 2 = 11 requests[1] -> nums[0] + nums[1] = 3 + 5 = 8 总和为: 11 + 8 = 19,这个方案是所有排列中查询之和最大的结果。
示例 2:
输入:nums = [1,2,3,4,5,6], requests = [[0,1]] 输出:11 解释:一个总和最大的排列为 [6,5,4,3,2,1] ,查询和为 [11]。
示例 3:
输入:nums = [1,2,3,4,5,10], requests = [[0,2],[1,3],[1,1]] 输出:47 解释:一个和最大的排列为 [4,10,5,3,2,1] ,查询结果分别为 [19,18,10]。
提示:
n == nums.length
1 <= n <= 105
0 <= nums[i] <= 105
1 <= requests.length <= 105
requests[i].length == 2
0 <= starti <= endi < n
Related Topics
- 贪心
- 数组
- 前缀和
- 排序
- 👍 51
- 👎 0
2. 原题链接
链接: 1589. 所有排列中的最大和
二、 解题报告
1. 思路分析
- 题意实际上是需要访问次数越大的位置,放个越大的值。
- 那么由于数据范围是10^5,我们可以用树状数组计算每个点的访问次数。
- 对访问次数和原数组都逆序排序,对应的位置放对应的数计算即可。
复杂度O(nlgn)。
- 前缀和思路:
实际上树状数组的IUPQ模型是基于差分数组的:
- sum(l,r,v):对差分数组区间两端操作。
- get(index):相当于求差分数组截止index的前缀和。
树状数组是为了查询任意区间的,这题我们只需要前缀和,那么可以去掉树状数组的lgN。
直接展开差分数组做。
当然可以优化掉差分数组的那层空间,直接计算freq。
2. 复杂度分析
最坏时间复杂度O(nlog2n)
3. 代码实现
树状数组`
class BinIndexTree:
def __init__(self, size):
self.size = size
self.bin_tree = [0 for _ in range(size+5)]
def add(self,i,v):
while i<=self.size :
self.bin_tree[i] += v
i += self.lowbit(i)
def update(self,i,v):
val = v - (self.sum(i)-self.sum(i-1))
self.add(i,val)
def sum(self,i):
s = 0
while i >= 1:
s += self.bin_tree[i]
i -= self.lowbit(i)
return s
def lowbit(self,x):
return x&-x
def _point_query(self,i):
return self.sum(i)
def _interval_add(self,l,r,v):
self.add(l,v)
self.add(r+1,-v)
class Solution:
def maxSumRangeQuery(self, nums: List[int], requests: List[List[int]]) -> int:
n = len(nums)
mod = 10**9+7
nums.sort(reverse=True)
tree = BinIndexTree(n+5)
for start,end in requests:
tree._interval_add(start+1,end+1,1)
freq = [0] * n
for i in range(n):
freq[i] = tree._point_query(i+1)
ans = 0
freq.sort(reverse=True)
for i in range(n):
if freq[i] ==0:
break
ans += freq[i]*nums[i]%mod
ans %= mod
return ans
差分数组
class Solution:
def maxSumRangeQuery(self, nums: List[int], requests: List[List[int]]) -> int:
n = len(nums)
mod = 10**9+7
nums.sort(reverse=True)
diff = [0]*(n+1)
for start,end in requests:
diff[start] += 1
diff[end+1] -= 1
freq = [0] * n
s = 0
for i in range(n):
s += diff[i]
freq[i] = s
ans = 0
freq.sort(reverse=True)
for i in range(n):
if freq[i] ==0:
break
ans += freq[i]*nums[i]%mod
ans %= mod
return ans
差分数组
省去空间开销
class Solution:
def maxSumRangeQuery(self, nums: List[int], requests: List[List[int]]) -> int:
n = len(nums)
mod = 10**9+7
nums.sort(reverse=True)
diff = [0]*(n+1)
for start,end in requests:
diff[start] += 1
diff[end+1] -= 1
freq = [0] * n
s = 0
for i in range(n):
s += diff[i]
freq[i] = s
ans = 0
freq.sort(reverse=True)
for i in range(n):
if freq[i] ==0:
break
ans += freq[i]*nums[i]%mod
ans %= mod
return ans
三、 本题小结
- 前缀和差分数组的结合。