Acwing 853.有边数限制的最短路

Acwing 853.有边数限制的最短路

链接:853. 有边数限制的最短路 - AcWing题库

image-20230711201742122

/*
题解:bellman_ford算法 可以算是一种暴力的算法了 他可以解决有复权边的单源最短路径 
也可以解决图是否存在负环的问题 还可以求出 不超过k条边的最短路径问题 但是效率低下
时间复杂度为o(nk)n是点数 k是最多经过的边次数
其算法就是枚举k遍 将每一条边进行松弛操作
*/
#include<iostream>
#include<algorithm>
#include<cstring>

using namespace std;

const int N=1e5;
const int inf = 0x3f3f3f3f;
struct node{
    int a;
    int b;
    int w;
}edge[N];
int n,m,k;
int dist[N];
int back[N];// 防止跟新出错 使用上次的数据
void bellman_ford(){
    memset(dist,0x3f,sizeof dist);
    dist[1]=0;
   
    for(int i=1;i<=k;i++){
        for(int j=1;j<=n;j++){
        back[j]=dist[j];  
       }
        for(int j=0;j<m;j++){
            int a = edge[j].a;
            int b = edge[j].b;
            int w = edge[j].w;
            dist[b] = min(dist[b],back[a]+w);
        }
    }
    if(dist[n]>0x3f3f3f3f/2)cout<<"impossible"<<endl;
    else cout<<dist[n]<<endl;
}
int main()
{
    cin>>n>>m>>k;
    for(int i=0;i<m;i++){
        int a,b,c;
        cin>>a>>b>>c;
        edge[i].a = a;
        edge[i].b = b;
        edge[i].w = c;
    }
    bellman_ford();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值