acwing 853 有边数限制的最短路 (Bellman-Ford算法)

本文详细介绍了Bellman-Ford算法在处理含有负权边的图中寻找最短路径的问题,强调了存在负权回路可能导致无法找到最短路的情况,并通过代码示例展示了如何在有边数限制的情况下进行k次迭代求解最短距离。同时,提到了备份数组的重要性,以防在更新过程中出现错误。
摘要由CSDN通过智能技术生成

题面

在这里插入图片描述

题解

在这里插入图片描述
如果图中存在负权回路,则不一定有最短路(我们更新距离,每次经过回路值就会减少,无限循环就会变为负无穷)

在这里插入图片描述
备份数组:每次迭代前,都要将原来的dist数组备份,防止发生串联,比如图中,我们第一次迭代,用1的距离将2号点更新成了1,dist[2]=1,那么拿1号点更新3的时候,如果还是拿dist[2]+w[3]来更新dist[3]的话,就会出错,应该用dist[3]=dist[1]+w[3]=3 来更新才是正确的

k的意义:有边数k的限制,我们就应该迭代k次,就表示从1号点到n号点最多经过k条边的最短距离(有边数的限制,只能用bellman-ford算法)

代码

#include<bits/stdc++.h>

using namespace std;
const int N = 1e5 + 10;

int n, m, k;
int dist
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值