Deep embedding network for clustering
论文笔记
网络结构

和普通autoencoder相似,区别在于损失函数上。
损失函数
损失函数分为三部分,一个是重构误差,和普通的autoencoder一样,就不赘述了;一个用来保持局部分布不变(Locality-preserving);另外一个使隐层表达变得稀疏(Group Sparsity )。
Locality-preserving

其中, k ( i ) k(i) k(i)是点 i i i的 k k k个近邻(即knn算出的邻居), S i j S_{ij} S

这篇博客是关于Deep embedding network for clustering的论文笔记。网络结构类似于自动编码器,但损失函数由三部分组成:重构误差、局部保持和组稀疏性。局部保持损失确保数据点与其近邻的距离在新空间中最小化,而组稀疏性损失促进隐藏层表达的块对角化,实现组间稀疏性。通过限制玻耳兹曼机进行预训练,以优化网络权重。
最低0.47元/天 解锁文章
1003

被折叠的 条评论
为什么被折叠?



