在统计学习中,有两种模型:概率模型和非概率模型;
概率模型:形式为P(x|y),即在学习过程中,y未知,训练后模型得到的输出是x的一系列值的概率;
非概率模型:形式为决策函数,即输入x到输出y的一个映射,且输出唯一;
软分类:使用的是概率模型,输出不同类对应的概率,最后的分类结果取概率最大的类,如多SVM组合分类;
硬分类:使用的是非概率模型,分类结果就是决策函数的决策结果;
在统计学习中,有两种模型:概率模型和非概率模型;
概率模型:形式为P(x|y),即在学习过程中,y未知,训练后模型得到的输出是x的一系列值的概率;
非概率模型:形式为决策函数,即输入x到输出y的一个映射,且输出唯一;
软分类:使用的是概率模型,输出不同类对应的概率,最后的分类结果取概率最大的类,如多SVM组合分类;
硬分类:使用的是非概率模型,分类结果就是决策函数的决策结果;