GNN论文阅读笔记

General Idea

GNN, as one of the Message Passing Neural Networks(MPNN), generally aggregates the features from the neighborhood of nodes in each layer.

1. Structure-awareness GNN

因为GNN的aggregator通常是permutation-invariant的,比如sum、mean、max等,这导致了GNN无法区分某些non-isomorphic graph。而structure-awareness类方法,就是通过强调structure的概念,

1.1 GEOM-GCN — GEOMETRIC GRAPH CONVOLUTIONAL NETWORKS(ICLR 2020)

在这里插入图片描述
3 modules:

  • Node Embedding: v → z v v \to z_v vzv
    • Implementation: Isomap \ Poincare \ Stru2vec
  • Structural Neighborhood:
    • N ( v ) N(v) N(v) = {neighbordhood in graph N g ( v ) N_g(v) Ng(v), neighbordhood in latent space N s ( v ) N_s(v) Ns(v), relational op τ \tau τ}
    • N s ( v ) N_s(v) Ns(v): d ( z v , z u ) < ρ d(z_v,z_u)< \rho d(zv,zu)<ρ
    • τ \tau τ: function,输入( z v z_v zv, z u z_u zu),输出他们的geometric relationship r,每个node在latent space中相对于target node会有一一对应的geometric relationship
  • Bi-level Aggregation:
    • Low-level Aggregation:
      • 把neighborhood(graph/latent space)和geo relationship都相同的node通过类似GCN的计算aggregate到virtual node e
    • High-level Aggregation:
      • 把各个virtual node的feature concat起来

2. Entity Alignment(KG) + GNN

  • https://paperswithcode.com/task/entity-alignment
  • Idea: Match the same entity in different knowledge graph
  • Challenge: Different KG often have different neighbor structure for the same entity
    img from AliNet

2.1 AliNet — Knowledge Graph Alignment Network with Gated Multi-hop Neighborhood Aggregation

  • 由于不同KG对应entity的local structure不一样,所以导致不同KG同样的entity的representation会有差异
  • 但是,就算KG不同,跟同一entity有关的东西终究就是那些,只不过有的会从1-hop neighbor变成 2-hop甚至k-hop
  • 因此,AliNet在对1-hop neighbor运用GCN的基础上,对2-hop运用attention机制,如下图
    在这里插入图片描述

2.2 MuGNN — Multi-Channel Graph Neural Network for Entity Alignment

  • 不同KG有2种结构差异:
    • the missing relations due to the incompleteness nature of KG
    • the exclusive entities caused by different construction demands of applications or languages.
      在这里插入图片描述
  • KG Completion(把KG漏掉的link给补上)
    • rule inference: 先通过AMIE+去分别mine rule
    • rule transfer: 对于图G得到的rules set,如果某个rule k中的每个relation都和G’中的某个relation能够align,就把k中的每个relation都进行替换构成k’加入到G’的rules set中
    • rule grounding: 根据之前得到的每个图自己的rules set,然后对每个rule,看看自己图中有哪些premise在图中,而conclusion不在的情况,就对应的把那些relation(triplets)补上
  • MuGNN
    • Relation weighting
      • 2 adjacency matrices for each channel
      • KG self-attention(看neighborhood里面哪个比较重要) -> A1
      • KG cross-attention(把多余relation的weight置零) -> A2
    • Multi-channel GNN encoder
      • 这里channel应该理解为branch——每个branch有一层shared weight的GCN,不同branch功能不同
      • 本文channel=2——A1、A2
    • Align model
      • 在2个图直接根据seed alignment为entity和relation分别构造pair
      • 让positive pair的距离更小,negative pair的距离更大
      • 每5epoch重新构造negative pair,选最难的(最相似的)
      • 对triplets和rule grounds也构造类似的pair和loss
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值