图神经网络论文中提到的augmented graphs, 和虚拟节点指的是

本文介绍了图神经网络(GNN)中两种关键概念:augmented graphs和虚拟节点。augmented graphs通过添加噪声、扰动结构、生成子图和增加标签等方法扩展原始图数据,提升模型泛化能力。虚拟节点是附加到图上的特殊节点,与所有其他节点相连,促进信息快速传播,提高GNN的学习效果。文中还提及了PyG和gtrick库中虚拟节点的不同实现方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.augmented graphs

在图神经网络(GNN)的研究中,通常需要将原始的图数据转换为可以用于机器学习的形式。其中一种常见的方法是将原始的图数据进行扩充,得到所谓的"augmented graphs",也可以称之为“增强图”。以扩展数据集并提高模型的泛化能力。

具体来说,augmented graphs可以包括以下内容:

  1. 添加噪声:在原始图中添加随机噪声,例如加入随机的节点或边。

  2. 扰动结构:对原始图的节点或边进行随机交换或删除,以生成类似但不完全相同的新图。

  3. 生成子图:从原始图中提取子图,以生成与原图类似但不同的新图。

  4. 增加标签:对原始图的节点或边添加或更改标签,以扩展数据集并提高模型的鲁棒性。

这些augmented graphs的变换可以通过数据增强技术来实现,例如随机缩放、平移或旋转。这些变换可以帮助GNN模型学习更泛化的图表征,并提高模型在未见过的数据上的性能。

2.Virtual Node

为图添加一个虚拟节点(Virtual Node),这一节点与图上的所有节点相连。每次更新节点信息时,首先将虚拟节点的信息传播给图上的每个节点,之后使用GNN更新图上的节点信息,在将图上的节点信息传播向虚拟节点,更新虚拟节点的表示。

从这一trick的作用方式可以看出,它可以让图上的节点快速交换信息,只要经过一次虚拟节点的信息聚合与传播,图上的任意一个节点就可以获得其他所有节点的信息。

值得注意的是,PyG中已有

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值