1.augmented graphs
在图神经网络(GNN)的研究中,通常需要将原始的图数据转换为可以用于机器学习的形式。其中一种常见的方法是将原始的图数据进行扩充,得到所谓的"augmented graphs",也可以称之为“增强图”。以扩展数据集并提高模型的泛化能力。
具体来说,augmented graphs可以包括以下内容:
-
添加噪声:在原始图中添加随机噪声,例如加入随机的节点或边。
-
扰动结构:对原始图的节点或边进行随机交换或删除,以生成类似但不完全相同的新图。
-
生成子图:从原始图中提取子图,以生成与原图类似但不同的新图。
-
增加标签:对原始图的节点或边添加或更改标签,以扩展数据集并提高模型的鲁棒性。
这些augmented graphs的变换可以通过数据增强技术来实现,例如随机缩放、平移或旋转。这些变换可以帮助GNN模型学习更泛化的图表征,并提高模型在未见过的数据上的性能。
2.Virtual Node
为图添加一个虚拟节点(Virtual Node),这一节点与图上的所有节点相连。每次更新节点信息时,首先将虚拟节点的信息传播给图上的每个节点,之后使用GNN更新图上的节点信息,在将图上的节点信息传播向虚拟节点,更新虚拟节点的表示。
从这一trick的作用方式可以看出,它可以让图上的节点快速交换信息,只要经过一次虚拟节点的信息聚合与传播,图上的任意一个节点就可以获得其他所有节点的信息。
值得注意的是,PyG中已有