gnn 编码器 传播器 聚合器_深度解析 |Principal Neighbourhood Aggregation | 使用多聚合器聚合图信息结构...

本文深入探讨了图神经网络(GNN)中的编码器、传播器和聚合器,重点介绍了主邻域聚合(PNA)方法,通过使用多种聚合器并结合节点度的缩放器来更有效地处理图信息结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者 | 李梓盟审稿 | 陈雨洁
今天给大家介绍剑桥大学Pietro Liò团队发表的一项研究工作“Principal Neighbourhood Aggregation for Graph Nets”。作者针对图神经网络(GNNs)的表达力展开研究,将GNN理论框架扩展至连续特征,并从数学上证明了在这种情况下GNN模型对多种聚合函数的需求。基于上述工作,作者还提出主邻域聚合(PNA)网络,将多个聚合器与基于节点度的缩放器相结合, 并通过使用作者新提出的多任务基准以及“encode-process-decode”结构,证明了PNA网络与其他模型相比获得和利用图结构的优越能力。 7f6ff415dee041b52491a240483b6b67.png1

介绍

近年来GNN在图表示学习方面取得很大进展,但由于缺乏评估GNN表达能力的标准基准和理论框架,新提出的GNN模型并没有评估其网络能否准确表示图的结构特性,其模型的有效性很难得到验证。最近关于各种GNN模型表达能力的研究主要集中在同构任务和可数特征空间上,然而这些研究主要侧重于区分不同的图形拓扑能力上,而在了解它们能否捕获并利用图结构的基本特征上所做的工作很少。 作者认为当前GNN的聚合层其实并不能从单层的节点邻域中提取足够的信息,并在数学上证明了对多种聚合的需求。然后作者提出基于节点度的缩放器的概念,使其能够允许GNN根据每个节点的度放大或衰减信号。结合上述内容,作者设计了主邻域聚合(PNA࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值