作者 | 李梓盟审稿 | 陈雨洁今天给大家介绍剑桥大学Pietro Liò团队发表的一项研究工作“Principal Neighbourhood Aggregation for Graph Nets”。作者针对图神经网络(GNNs)的表达力展开研究,将GNN理论框架扩展至连续特征,并从数学上证明了在这种情况下GNN模型对多种聚合函数的需求。基于上述工作,作者还提出主邻域聚合(PNA)网络,将多个聚合器与基于节点度的缩放器相结合, 并通过使用作者新提出的多任务基准以及“encode-process-decode”结构,证明了PNA网络与其他模型相比获得和利用图结构的优越能力。

介绍
近年来GNN在图表示学习方面取得很大进展,但由于缺乏评估GNN表达能力的标准基准和理论框架,新提出的GNN模型并没有评估其网络能否准确表示图的结构特性,其模型的有效性很难得到验证。最近关于各种GNN模型表达能力的研究主要集中在同构任务和可数特征空间上,然而这些研究主要侧重于区分不同的图形拓扑能力上,而在了解它们能否捕获并利用图结构的基本特征上所做的工作很少。 作者认为当前GNN的聚合层其实并不能从单层的节点邻域中提取足够的信息,并在数学上证明了对多种聚合的需求。然后作者提出基于节点度的缩放器的概念,使其能够允许GNN根据每个节点的度放大或衰减信号。结合上述内容,作者设计了主邻域聚合(PNA