Langchain学习日记——基于文档

一、面向文档的对话机器人——代码

from operator import itemgetter

from langchain_core.prompts import ChatPromptTemplate, PromptTemplate, format_document
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough, RunnableLambda
from langchain_community.chat_models import ChatOllama
from langchain_community.embeddings import OllamaEmbeddings

from langchain_community.document_loaders import ArxivLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores.faiss import FAISS

# 加载 arXiv 上的论文《ReAct: Synergizing Reasoning and Acting in Language Models》
loader = ArxivLoader(query="2210.03629", load_max_docs=1)
docs = loader.load()

# 把文本分割成 200 字一组的切片
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=20)
chunks = text_splitter.split_documents(docs)

# 构建 FAISS 向量存储和对应的 retriever
vs = FAISS.from_documents(chunks[:10], OllamaEmbeddings(model="llama2-chinese:13b"))
# vs.similarity_search("What is ReAct")
retriever = vs.as_retriever()

# 构建 Document 转文本段落的工具函数
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")
def _combine_documents(
    docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator="\n\n"
):
    doc_strings = [format_document(doc, document_prompt) for doc in docs]
    return document_separator.join(doc_strings)

# 准备 Model I/O 三元组
template = """Answer the question based only on the following context:
{context}

Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
model = ChatOllama(model="llama2-chinese:13b")

# 构建 RAG 链
chain = (
    {
        "context": retriever | _combine_documents,
        "question": RunnablePassthrough()
    }
    | prompt
    | model
    | StrOutputParser()
)
chain.invoke("什么是 ReAct?")

二、文档

2.1 文档加载

        langchain提供了很多种类的文档加载器

2.2 文档预处理

        langchain提供了很多种类的文本处理和转换工具,用之前也查查,最基本的就是文档分割,见文档分割一文

2.3 文本向量化存储

vectorstore = FAISS.from_texts(
    ["harrison worked at kensho"], embedding=OllamaEmbeddings(model="llama2-chinese:13b")
)
# 定义了一个检索器 retriever,可以从文本中检索上下文
retriever = vectorstore.as_retriever()  
print(retriever.InputType)
print(retriever.OutputType)

<class 'str'>
typing.List[langchain_core.documents.base.Document]

FAISS.from_texts更适合处理简单的文本列表

FAISS.from_documents则适用于处理包含更多结构化信息的文档       

由大模型负责embedding,而后存在向量数据库faiss中,注意langchain也支持多种向量数据库的使用

三、retriever检索

        向量存储的retriever = vs.as_retriever()方法,得到绑定该向量存储的检索器

3.1 retriever输入输出类型

输入:<class 'str'>
输出:typing.List[langchain_core.documents.base.Document]

这里retriever接收字符串"where did harrison work?":

retrieval_chain = (
    {"context": retriever, "question": RunnablePassthrough()}
    | prompt
    | model
    | StrOutputParser()
)

retrieval_chain.invoke("where did harrison work?")

这里chain传入一个字典,故需要通过itemgetter("question")获取字符串传给retriever:

chain = (
     {
         "context": itemgetter("question") | retriever,
         "question": itemgetter("question"),
         "language": itemgetter("language"),
     }
     | prompt
     | model
     | StrOutputParser()
)

print(chain.invoke({"question": "where did harrison work", "language": "italian"}))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值