时间限制: 1 Sec 内存限制: 128 MB
题目描述
小K在玩动物森友会,作为一个钓鱼爱好者,他想获得钓鱼比赛的冠军!在他面前是一片湖面,湖面以大小为n x m 的二进制矩阵 grid进行表示。grid中0表示湖水,1表示该位置有 1 条鱼。
恰好,他有一把神奇的鱼竿,这把鱼竿可以在任意位置开始抛竿,并且一次性钓到与该位置连通的整个鱼群,这里「连通」要求鱼群中的 鱼 必须在水平或者竖直的四个方向上 相邻。
他想问问你,在单次垂钓中,最多能钓到的鱼的数量。如果图上没有任何鱼,请输出0.
输入
第一行有两个正整数 n和 m(1≤n,m≤1000),代表该湖面是一个 n x m 的矩阵。
后面的 n 行每行有 m 个整数,每个数字为 0 或1,1 代表这里有1条鱼,0 代表是湖水。
输出
一个正整数,表示单次垂钓中能获得的最多的鱼的数目。
样例输入
8 13
0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 0 1 0 1 0 0
0 1 0 0 1 1 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0
样例输出
6
解析
这道题十分简单,判断最大连通子块题型,在判断连接子块的同时增加判断面积即可。
代码
#include <bits/stdc++.h>
using namespace std;
int maxn=0;
int n,m,ans,dx[8]={0,0,1,-1,1,1,-1,-1},dy[8]={1,-1,0,0,-1,1,-1,1};
char mp[1005][1005];
bool mp1[1005][1005];
void dfs(int x,int y)
{
mp1[x][y]=0;
ans++;
for(int i = 0;i<4;i++)
{
int xx=x+dx[i];
int yy=y+dy[i];
if(xx>=1&&xx<=m&&yy>=1&&yy<=n&&mp1[xx][yy]==1)
{
dfs(xx,yy);
}
}
return;
}
int main(){
ans=0;
cin>>m>>n;
for(int i = 1;i<=m;i++)
{
for(int j = 1;j<=n;j++)
{
cin>>mp[i][j];
if(mp[i][j]=='1')
{
mp1[i][j]=1;
}
}
}
for(int i = 1;i<=m;i++)
{
for(int j = 1;j<=n;j++)
{
if(mp1[i][j]==1){
dfs(i,j);
if(ans>maxn)
{
maxn=ans;
}
ans=0;
}
}
}
cout<<maxn;
return 0;
}