硬币个数有限,要求用最少的硬币找钱。书上的一道练习题,感觉挺有趣的。
假设各种硬币面值t[i](顺排),个数c[i],C[i][j]为用t[0]..t[i]面值的硬币找钱j的最少硬币个数
则C[i][j] = min{k + C[i - 1][j – k * t[i]]}, 0 <= k <= c[i] 相当于遍历第i种硬币的可能性。
/**
* 最少钱币问题,每种钱币有个数限制
*
* @author qj
*
*/
public class coin {
int t[] = { 1, 2, 5 };
int c[] = { 2, 3, 2 };
int work(int S) {
int N = S + 1;
int[][] A = new int[N][2];
int[][] M = new int[t.length][N];
int i, j, k;
int flag = 0;
A[0][0]=0;
for (j = 1; j < N; j++) {
M[0][j] = A[j][0] = j % t[0] == 0 ? (j / t[0] > c[0] ? Integer.MAX_VALUE
: j / t[0])
: Integer.MAX_VALUE;
}
for (i = 1; i < t.length; i++) {
int next = (flag + 1) % 2;
for (j = 1; j < N; j++) {
A[j][next] = Integer.MAX_VALUE;
for (k = 0; k <= c[i]; k++) {
if (j – k * t[i] < 0)
break;
if (A[j][next] > A[j - k * t[i]][flag]) {
A[j][next] = k + A[j - k * t[i]][flag];
M[i][j] = k;
}
}
}
flag = next;
}
// 输出最优解
if (A[S][flag] != Integer.MAX_VALUE) {
int tt = S;
for (i = t.length – 1; i >= 0 && tt >= 0; i–) {
System.out.println(M[i][tt] + "*" + t[i]);
tt -= M[i][tt] * t[i];
}
return A[S][flag];
}
return -1;
}
/**
* @param args
*/
public static void main(String[] args) {
coin p = new coin();
System.out.println(p.work(18));
}
}
输出:
2*5
3*2
2*1
7
因为方程中只涉及i,i-1两行数据,所以代码中做了特殊处理,减少空间开销。
来自 风之谷