最少硬币问题
问题描述:设有n种不同面值的硬币,各硬币的面值存在于数组T[1:n]中。现要用这些面值的硬币来找钱。可以使用的各种面值的硬币个数存于数组Coins[1:n]中。对任意钱数0£m£20001,设计一个最少硬币找钱m的方法。
算法设计:对于给定的1£n£10 ,硬币面值数组T和可以使用的各种面值的硬币数组Coins,以及钱数m, 0£m£20001,计算找钱m的最少硬币数。
数据输入:由文件input.Txt提供输入数据,文件的第1行中只有一个整数给出n的值,第2行起每行两个数,分别是T[j]和Coins[j]。最后一行是要找的钱数m。
结果输出:将计算出的最少硬币数输出到文件output.txt。问题无解时输出-1。
这个题目,用一个二维的动态转移方程比一维动态转移方程更容易理解。
下面的解法,是基于一维动态转移方程。
/********************************************************************
** @file test.cpp
** @author liuke
** @date Fri Apr 22 23:50:50 2011
** @brief
**************************动态规划实现********************************
长度为m的数组f[1...m]中存放一系列子结果,即f[i]为要凑的钱数为i时
所需的最少硬币数,则c[m]为所求;
当要找的钱数i(1<i<m)与当前所试探的硬币面值k相等时,结果为1,即c[i]=1
当i大于当前所试探硬币面值k时,若f[i]为0,即还未赋过值,且c[i-k]不为0,
即从i元钱中刨去k元后剩下的钱数可以找开, 则c[i]=c[i-k]+1
若f[i]不为0,即已赋过值,则f[i]为f[i-k]+1和f[i]中较小的
**
//硬币问题就是一个多重背包问题
//动态迁移方程为 dp[k] = min{dp[k-t[i]]+1,dp[k]}
//就是,将第i个硬币拿出去得到的一个最少的找硬币数+1,和原硬币数相比最小的那个就是结果
//另外一种思路,可以将所有的硬币价值都放在一个数组,就变成了0-1背包问题,所需考虑的就是放不放的问题
#include<iostream>
using namespace std;
int min(int a,int b);
int main()
{
int n; //n种不同面值的硬币
int m;
int i , j ,k;
cout<<"请输入有几种不同的面值:";
cin>>n;
int *t =new int[n+1]; //硬币的面值存放在t数组中 -- 价值
int *coin = new int [n+1]; //可以使用的硬币个数存放在coin中--个数
cout<<"请输入"<<n<<"组硬币的面值和对应的个数(中间用空格隔开):"<<endl;
for(i = 1 ;i<n+1;i++)
cin>>t[i]>>coin[i];
cout<<"请输入要找的钱数m:";
cin>>m;
int dp[20002]={0} ; //dp[i] 用来记录钱数为i时的最少的硬币数
for(i=1;i<=m;i++)
dp[i] = 99999;
//dp[0] = 0;
for(i = 1 ;i <= n ; i++) //硬币面值的种数
for(j = 1 ; j <= coin[i] ; j++) //硬币的面值的个数
for( k = m ; k >= t[i] ; k-- )
{
dp[k] = min(dp[k-t[i]] +1,dp[k]);
//cout<<k<<": "<<dp[k]<<endl; 用于测试使用
}
cout<<"最少需要用到的硬币个数是:";
if(dp[m] == 99999)cout<<-1<<endl;
else cout<<dp[m]<<"个"<<endl;
}
int min(int a,int b)
{
return a<b?a:b;
}