朴素贝叶斯分类器常用的三种条件概率模型:伯努利、多项式、高斯模型

 

一、条件概率和贝叶斯定理

条件概率 :P(A|B)=\frac{P(AB)}{P(B)}
贝叶斯定理 :  P(B|A)=\frac{P(A|B)P(B)}{P(A)}

贝叶斯分类器: 若样本x有n个特征,用(x_{1},x_{2},...,x_{n})表示,

                           将其分到类y_k的可能性为: P(y_{k}|x_{1},x_{2},...,x_{n}) = P(y_{k})\prod_{i=1}^{n}P(x_{i}|y_{k})

                          根据上面的公式可以求x属于各个分类的可能性,取最大可能性的分类。

 

二、伯努利模型

处理布尔型特征(true和false,或者1和0),使用伯努利模型。

如果特征值x_i为1,那么P(x_i|y_k)=P(x_i=1|y_k)

如果特征值x_i为0,那么P(x_i|y_k)=1-P(x_i=1|y_k)

 

三、多项式模型

处理离散的特征使用多项式模型。多用在文本分类case中。

多项式模型在计算先验概率P(y_k)和条件概率P(x_i|y_k)时,会做一些平滑处理,其公式为: P(x_{i}|y_{k})=\frac{N_{y_{k},x_{i}}+\alpha}{N_{y_{k}}+n\alpha}

N_{yk}是类别为y_k的样本个数,n是特征的维数,N_{y_k,x_i}是类别为y_k的样本中,第i维特征的值是x_i的样本个数,α是平滑值。

 

四、高斯模型

处理连续的特征变量采用高斯模型。

高斯模型假设每个特征都符合高斯分布:P(x_{i}|y_{k})=\frac{1}{\sqrt{2\pi\sigma_{y_{k},i}^{2}}}exp({-\frac{(x_{i}-\mu_{y_{k},i})^{2}}{2 \sigma_{y_{k},i}^{2}}})

\mu_{y_k,i}表示类别为y_k的样本中,第i维特征的均值。 
\sigma^2_{y_k,i}表示类别为y_k的样本中,第i维特征的方差。

 

  • 2
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值