基于DTW距离的KNN算法实现股票高相似筛选案例

使用DTW算法简单实现曲线的相似度计算-CSDN博客

前文中股票高相关k线筛选问题的延伸。基于github上的代码迁移应用到股票高相关预测上。

这里给出一个相关完整的代码实现案例。

1、数据准备

假设你已经有了一些历史股票的k线数据。如果数据能打标哪些股票趋势是上涨的、下跌的会更好。假设这是你目前正在研究的股票k线图:

其他支股票的k-线图如下:

plt.figure(figsize=(11,7))
colors = ['#D62728','#2C9F2C','#FD7F23','#1F77B4','#9467BD',
          '#8C564A','#7F7F7F','#1FBECF','#E377C2','#BCBD27']

for i, r in enumerate([0,27,65,100,145,172]):
    plt.subplot(3,2,i+1)
    plt.plot(x_train[r][:100], label=labels[y_train[r]], color=colors[i], linewidth=2)
    plt.xlabel('time sequece')
    plt.legend(loc='upper left')
    plt.tight_layout()

接下来要使用基于dtw距离计算的knn近邻算法来找出与目标股票ta高相关的Top10支股票,并将他们的k-线图与ta股票的k-线图进行可视化对比呈现。

2、训练KnnDtw算法模型

import sys
import collections
import itertools
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import mode
from scipy.spatial.distance import squareform

plt.style.use('bmh')
%matplotlib inline

try:
    from IPython.display import clear_output
    have_ipython = True
except ImportError:
    have_ipython = False

class KnnDtw(object):
    """K-nearest neighbor classifier using dynamic time warping
    as the distance measure between pairs of time series arrays
    
    Arguments
    ---------
    n_neighbors : int, optional (default = 5)
        Number of neighbors to use by default for KNN
        
    max_warping_window : int, optional (default = infinity)
        Maximum warping window allowed by the DTW dynamic
        programming function
            
    subsample_step : int, optional (default = 1)
        Step size for the timeseries array. By setting subsample_step = 2,
        the timeseries length will be reduced by 50% because every second
        item is skipped. Implemented by x[:, ::subsample_step]
    """
    
    def __init__(self, n_neighbors=5, max_warping_window=10000, subsample_step=1):
        self.n_neighbors = n_neighbors
        self.max_warping_window = max_warping_window
        self.subsample_step = subsample_step
    
    def fit(self, x, l):
        """Fit the model using x as training data and l as class labels
        
        Arguments
        ---------
        x : array of shape [n_samples, n_timepoints]
            Training data set for input into KNN classifer
            
        l : array of shape [n_samples]
            Training labels for input into KNN classifier
        """
        
        self.x = x
        self.l = l
        
    def _dtw_distance(self, ts_a, ts_b, d = lambda x,y: abs(x-y)):
        """Returns the DTW similarity distance between two 2-D
        timeseries numpy arrays.

        Arguments
        ---------
        ts_a, ts_b : array of shape [n_samples, n_timepoints]
            Two arrays containing n_samples of timeseries data
            whose DTW distance between each sample of A and B
            will be compared
        
        d : DistanceMetric object (default = abs(x-y))
            the distance measure used for A_i - B_j in the
            DTW dynamic programming function
        
        Returns
        -------
        DTW distance between A and B
        """

        # Create cost matrix via broadcasting with large int
        ts_a, ts_b = np.array(ts_a), np.array(ts_b)
        M, N = len(ts_a), len(ts_b)
        cost = sys.maxsize * np.ones((M, N))

        # Initialize the first row and column
        cost[0, 0] = d(ts_a[0], ts_b[0])
        for i in np.arange(1, M):
            cost[i, 0] = cost[i-1, 0] + d(ts_a[i], ts_b[0])

        for j in np.arange(1, N):
            cost[0, j] = cost[0, j-1] + d(ts_a[0], ts_b[j])

        # Populate rest of cost matrix within window
        for i in np.arange(1, M):
            for j in np.arange(max(1, i - self.max_warping_window),
                            min(N, i + self.max_warping_window)):
                choices = cost[i - 1, j - 1], cost[i, j-1], cost[i-1, j]
                cost[i, j] = min(choices) + d(ts_a[i], ts_b[j])

        # Return DTW distance given window 
        return cost[-1, -1]
    
    def _dist_matrix(self, x, y):
        """Computes the M x N distance matrix between the training
        dataset and testing dataset (y) using the DTW distance measure
        
        Arguments
        ---------
        x : array of shape [n_samples, n_timepoints]
        
        y : array of shape [n_samples, n_timepoints]
        
        Returns
        -------
        Distance matrix between each item of x and y with
            shape [training_n_samples, testing_n_samples]
        """
        
        # Compute the distance matrix        
        dm_count = 0
        
        # Compute condensed distance matrix (upper triangle) of pairwise dtw distances
        # when x and y are the same array
        if(np.array_equal(x, y)):
            x_s = np.shape(x)
            dm = np.zeros((x_s[0] * (x_s[0] - 1)) // 2, dtype=np.double)
            
            p = ProgressBar(shape(dm)[0])
            
            for i in np.arange(0, x_s[0] - 1):
                for j in np.arange(i + 1, x_s[0]):
                    dm[dm_count] = self._dtw_distance(x[i, ::self.subsample_step],
                                                      y[j, ::self.subsample_step])
                    
                    dm_count += 1
                    p.animate(dm_count)
            
            # Convert to squareform
            dm = squareform(dm)
            return dm
        
        # Compute full distance matrix of dtw distnces between x and y
        else:
            x_s = np.shape(x)
            y_s = np.shape(y)
            dm = np.zeros((x_s[0], y_s[0])) 
            dm_size = x_s[0]*y_s[0]
            
            p = ProgressBar(dm_size)
        
            for i in np.arange(0, x_s[0]):
                for j in np.arange(0, y_s[0]):
                    dm[i, j] = self._dtw_distance(x[i, ::self.subsample_step],
                                                  y[j, ::self.subsample_step])
                    # Update progress bar
                    dm_count += 1
                    p.animate(dm_count)
        
            return dm
        
    def predict(self, x):
        """Predict the class labels or probability estimates for 
        the provided data

        Arguments
        ---------
          x : array of shape [n_samples, n_timepoints]
              Array containing the testing data set to be classified
          
        Returns
        -------
          2 arrays representing:
              (1) the predicted class labels 
              (2) the knn label count probability
        """
        
        dm = self._dist_matrix(x, self.x)

        # Identify the k nearest neighbors
        knn_idx = dm.argsort()[:, :self.n_neighbors]

        # Identify k nearest labels
        knn_labels = self.l[knn_idx]
        
        # Model Label
        mode_data = mode(knn_labels, axis=1)
        mode_label = mode_data[0]
        mode_proba = mode_data[1]/self.n_neighbors

        return mode_label.ravel(), mode_proba.ravel()

class ProgressBar:
    """This progress bar was taken from PYMC
    """
    def __init__(self, iterations):
        self.iterations = iterations
        self.prog_bar = '[]'
        self.fill_char = '*'
        self.width = 40
        self.__update_amount(0)
        if have_ipython:
            self.animate = self.animate_ipython
        else:
            self.animate = self.animate_noipython

    def animate_ipython(self, iter):
#         print('\r', self,)
#         sys.stdout.flush()
        self.update_iteration(iter + 1)

    def update_iteration(self, elapsed_iter):
        self.__update_amount((elapsed_iter / float(self.iterations)) * 100.0)
        self.prog_bar += '  %d of %s complete' % (elapsed_iter, self.iterations)

    def __update_amount(self, new_amount):
        percent_done = int(round((new_amount / 100.0) * 100.0))
        all_full = self.width - 2
        num_hashes = int(round((percent_done / 100.0) * all_full))
        self.prog_bar = '[' + self.fill_char * num_hashes + ' ' * (all_full - num_hashes) + ']'
        pct_place = (len(self.prog_bar) // 2) - len(str(percent_done))
        pct_string = '%d%%' % percent_done
        self.prog_bar = self.prog_bar[0:pct_place] + \
            (pct_string + self.prog_bar[pct_place + len(pct_string):])

    def __str__(self):
        return str(self.prog_bar)

模型训练、预测

m = KnnDtw(n_neighbors=1, max_warping_window=10)
m.fit(x_train[::10], y_train[::10]) # 做数据采样,每10个元素采样
label, proba = m.predict(x_test[::10])

模型评估

from sklearn.metrics import classification_report, confusion_matrix
print(classification_report(label, y_test[::10],
                            target_names=[l for l in labels.values()]))

conf_mat = confusion_matrix(label, y_test[::10])

fig = plt.figure(figsize=(6,6))
width = np.shape(conf_mat)[1]
height = np.shape(conf_mat)[0]

res = plt.imshow(np.array(conf_mat), cmap=plt.cm.summer, interpolation='nearest')
for i, row in enumerate(conf_mat):
    for j, c in enumerate(row):
        if c>0:
            plt.text(j-.2, i+.1, c, fontsize=16)
cb = fig.colorbar(res)
plt.title('Confusion Matrix')
_ = plt.xticks(range(6), [l for l in labels.values()], rotation=90)
_ = plt.yticks(range(6), [l for l in labels.values()])

3、为目标股票ta筛选Top10高相似的股票

3.1 计算股票的dtw距离,并筛选出Top10高相关股票
m._dtw_distance(x_train[1], x_train[1112])

x_similaritys = {}
# 选定一支目标股票
ta = x_test[0] 
# 分别计算其他200支股票与目标股票的相关性系数
for stock_id, stock_data in enumerate(x_test[1:200]):
    dtw_dist = m._dtw_distance(ta, stock_data)
    if stock_id not in x_similaritys.keys() and stock_id!=0:
        x_similaritys[stock_id] = dtw_dist

#选出与目标股票Top10相似的股票k线
res = sorted(x_similaritys.items(), key=lambda x: x[1])
print("与目标股票Ta高相关的10支股票为:")
for stock_id,dtw_dist in res[:10]:
    print("股票id:",stock_id," , DTW距离: ",dtw_dist)

3.2 可视化Top10高相似股票曲线
# 绘制TopN股票趋势曲线
plt.figure(figsize=(11, 11))
for i, (stock_id,dtw_dist) in enumerate(res[:10]):
#     print(i, stock_id,dtw_dist)
    plt.subplot(5,2,i+1)
    plt.plot(x_test[0][:100], label="stock-0", color=colors[0], linewidth=2)
    plt.plot(x_test[stock_id][:100], label="stock-%d"%stock_id, color=(0.2/(i+1),0.1/(i+1),0.7-0.2/(i+1)-0.1/(i+1)), linewidth=2)
    plt.xlabel('time')
    plt.legend(loc='upper left')
    plt.tight_layout()

红色的是目标股票Ta的k-线图,与之高相似的10支股票的k-线图为蓝色曲线,分别呈现在10个子图中,做为对比可视化,能更直观的对两支股票的走势作出差异对比。方便交付给投资者对比查看股票走势。

Done

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值