因为是有向图,而且一定能从1走到n,并且要求走到n时得到的分数尽可能大,或者是无穷,此时能想到的是从1到n的路上可能会出现正环,或者负环,这些环可能会影响到n时的大小,也可能不会影响,这时可以想到把最长路转换为最短路,即从dist[v]<dist[u]+c -> -dist[v]>-dist[u]-c,这样就是求从1到n的最短路,并判断其中是否有能影响n时结果的环,该题用Bellman-Ford也能做,spfa最差也是个Bellman-Ford,所以选择spfa,这时判断inf的条件应该是经过了n轮以后还会再改变dist[n]的值,说明1-n上的环影响了n时的取值,如果图是一个首尾相连的大环,光跑一轮最短路就需要n-1轮,如果再想知道这个大环是否会影响dist[n]需要跑2*n轮,即起码跑两遍大环才能确定这个环会不会影响dist[n],所以要把结束条件放大
AC代码:
#include <bits/stdc++.h>
using namespace std;
using LL = long long;
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
int n, m;
cin >> n >> m;
vector<vector<pair<LL, LL>>> G(n + 1);
for (int i = 0; i < m; i++) {
LL a, b, c;
cin >> a >> b >> c;
G[a].push_back(make_pair(b, -c));
}
bool ok = false;
vector<LL> dist(n + 1, 1e18);
vector<bool> vis(n + 1);
vector<int> cnt(n + 1);
queue<LL> qu;
qu.push(1);
dist[1] = 0;
vis[1] = true;
while (!qu.empty()) {
int u = qu.front();
qu.pop();
vis[u] = true;
for (auto v : G[u]) {
if (dist[v.first] > dist[u] + v.second) {
dist[v.first] = dist[u] + v.second;
cnt[v.first] = cnt[u] + 1;
if (cnt[v.first] >= n && v.first == n) {
ok = true;
break;
}
if (cnt[v.first] >= n * 2) {
goto aaa;
}
if (!vis[v.first]) {
vis[v.first] = true;
qu.push(v.first);
}
}
}
vis[u] = false;
if (ok) {
break;
}
}
aaa:;
if (ok) {
cout << "inf\n";
} else {
cout << -dist[n] << '\n';
}
return 0;
}