【POJ1430】Binary Stirling Numbers 【斯特林数】

题目传送门
题意: 判断第二类斯特林数的奇偶性。
我自己先打了个表,发现结果挺有意思的,是个分形。
这里写图片描述
然而还是不会做,去膜了膜题解,发现看不懂,只好手推出来了一个和题解一样的公式。
题解: 我们都知道 S [ i ] [ j ] = S [ i − 1 ] [ j − 1 ] + j ∗ S [ i − 1 ] [ j ] S[i][j]=S[i-1][j-1]+j*S[i-1][j] S[i][j]=S[i1][j1]+jS[i1][j]
于是在mod2的意义下,当j为偶数, S [ i ] [ j ] ≡ S [ i − 1 ] [ j − 1 ] S[i][j]≡S[i-1][j-1] S[i][j]S[i1][j1];当j为奇数, S [ i ] [ j ] ≡ S [ i − 1 ] [ j − 1 ] + S [ i − 1 ] [ j ] S[i][j]≡S[i-1][j-1]+S[i-1][j] S[i][j]S[i1][j1]+S[i1][j]
我们可以倒过来。当j为偶数时, S [ i ] [ j ] S[i][j] S[i][j]会被加到 S [ i + 1 ] [ j + 1 ] S[i+1][j+1] S[i+1][j+1];当j为奇数, S [ i ] [ j ] S[i][j] S[i][j]会被加到 S [ i + 1 ] [ j + 1 ] S[i+1][j+1] S[i+1][j+1] S [ i + 1 ] [ j ] S[i+1][j] S[i+1][j]
我们还可以换一个角度描述问题:有一个点初始时在 ( 0 , 0 ) (0,0) (0,0)。若坐标 ( i , j ) (i,j) (i,j)的j为奇数,可以走到 ( i + 1 , j + 1 ) (i+1,j+1) (i+1,j+1),把走到 ( i + 1 , j + 1 ) (i+1,j+1) (i+1,j+1)记为①变换;若坐标 ( i , j ) (i,j) (i,j)的j为偶数,可以走到 ( i + 1 , j + 1 ) (i+1,j+1) (i+1,j+1) ( i + 1 , j ) (i+1,j) (i+1,j),把走到 ( i + 1 , j ) (i+1,j) (i+1,j)记为②变换。问走到点 ( n , m ) (n,m) (n,m)的方案总数。注意第一步只能是①变换走到 ( 1 , 1 ) (1,1) (1,1),因为走到任意满足 x > 0 x>0 x>0 ( x , 0 ) (x,0) (x,0)之后对答案都没有贡献,任意 S [ x ] [ 0 ] = 0 S[x][0]=0 S[x][0]=0
接下来我们发现移动的模式一定是这样的:
①,若干②,①,①,若干②,①,①,若干②,①…。
我们发现由 ( 0 , 0 ) (0,0) (0,0)走到 ( n , m ) (n,m) (n,m)一定走了 n n n步,其中一定有 m m m个①变换,除第一步外,①变换都是两两一组的。很容易得到,这些①变换的组之间共有 ( m + 1 ) / 2 (m+1)/2 (m+1)/2个间隔,每个间隔都可以塞若干或零个②变换。我们令 a = n − m a=n-m a=nm b = ( m + 1 ) / 2 b=(m+1)/2 b=(m+1)/2,则答案就相当于把 a a a个相同的球分成 b b b组,每组个数可以为0的方案总数。显然答案为 C a + b − 1 b − 1 C_{a+b-1}^{b-1} Ca+b1b1,由插板法得到。这里要用到一个结论, C m n C_m^n Cmn为奇数当且仅当m&n=n。注意判一判n,m等于0的情况。于是就搞掂了!
#代码

#include<cstdio>
int t,n,m,a,b;
int calc(int n,int m){
	return (m&n)==n;
}
int main(){
	scanf("%d",&t);
	while(t--){
		scanf("%d%d",&n,&m);
		if(!n&&!m){
			puts("1");
			continue;
		}
		if(!n||!m||n<m){
			puts("0");
			continue;
		}
		a=n-m;
		b=(m+1)/2;
		printf("%d\n",calc(b-1,a+b-1));
	}
	return 0;
}
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值